Parallel deblocking filtering in H.264/AVC using multiple CPUs and GPUs

Bart Pieters, Charles-Frederik Hollemeersch, J. D. Cock, W. D. Neve, P. Lambert, R. Walle
{"title":"Parallel deblocking filtering in H.264/AVC using multiple CPUs and GPUs","authors":"Bart Pieters, Charles-Frederik Hollemeersch, J. D. Cock, W. D. Neve, P. Lambert, R. Walle","doi":"10.1145/2393347.2396370","DOIUrl":null,"url":null,"abstract":"Deblocking filtering in the H.264/AVC standard is a computationally complex process because of the filter's high content adaptivity. Furthermore, the deblocking filter introduces a significant number of data dependencies, making parallel processing not obvious. Our previous works analyzed the dependencies of the filter and proposed a massively-parallel implementation, specifically tailored for execution on a single GPU. In this paper, we extend this work by proposing a parallel processing scheme for accelerating deblocking filtering using multiple CPU cores or GPUs. This scheme allows for standard-compliant filtering, regardless of slice configuration. Results show that our multi-GPU implementation using our proposed scheme achieves faster-than real-time deblocking at over 3794 frames per second for 1080p video pictures by using three GPUs. A multi-core CPU implementation using 8 CPU cores allows 1080p deblocking filtering of up to 695 frames per second.","PeriodicalId":212654,"journal":{"name":"Proceedings of the 20th ACM international conference on Multimedia","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2393347.2396370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Deblocking filtering in the H.264/AVC standard is a computationally complex process because of the filter's high content adaptivity. Furthermore, the deblocking filter introduces a significant number of data dependencies, making parallel processing not obvious. Our previous works analyzed the dependencies of the filter and proposed a massively-parallel implementation, specifically tailored for execution on a single GPU. In this paper, we extend this work by proposing a parallel processing scheme for accelerating deblocking filtering using multiple CPU cores or GPUs. This scheme allows for standard-compliant filtering, regardless of slice configuration. Results show that our multi-GPU implementation using our proposed scheme achieves faster-than real-time deblocking at over 3794 frames per second for 1080p video pictures by using three GPUs. A multi-core CPU implementation using 8 CPU cores allows 1080p deblocking filtering of up to 695 frames per second.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
并行去块滤波在H.264/AVC使用多个cpu和gpu
H.264/AVC标准中的去块滤波由于其内容的高自适应性,计算量很大。此外,去块过滤器引入了大量的数据依赖关系,使得并行处理不明显。我们之前的工作分析了过滤器的依赖关系,并提出了一个大规模并行的实现,专门为在单个GPU上执行量身定制。在本文中,我们通过提出一种并行处理方案来扩展这项工作,该方案使用多个CPU内核或gpu来加速去块滤波。无论切片配置如何,该方案都允许进行符合标准的过滤。结果表明,使用我们提出的方案的多gpu实现在使用三个gpu的情况下,对1080p视频图像实现了超过3794帧/秒的快速实时块化。使用8个CPU内核的多核CPU实现允许每秒高达695帧的1080p块化过滤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ROI-based protection scheme for high definition interactive video applications TouchPaper: making print interactive A genetic algorithm for audio retargeting Mining in-class social networks for large-scale pedagogical analysis Plug&touch: a mobile interaction solution for large display via vision-based hand gesture detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1