Ctrl-C: Instruction-Aware Control Loop Based Adaptive Cache Bypassing for GPUs

Shin-Ying Lee, Carole-Jean Wu
{"title":"Ctrl-C: Instruction-Aware Control Loop Based Adaptive Cache Bypassing for GPUs","authors":"Shin-Ying Lee, Carole-Jean Wu","doi":"10.1109/ICCD.2016.7753271","DOIUrl":null,"url":null,"abstract":"The performance of general-purpose graphics processing units (GPGPUs) is often limited by the efficiency of the memory subsystems, particularly the L1 data caches. Because of the massive multithreading computation paradigm, significant memory resource contention and cache thrashing are often observed in GPGPU workloads. This leads to high cache miss rates and substantial pipeline stall time. In order to improve the efficiency of GPU caches, we propose an instruction-aware control loop based adaptive cache bypassing design (Ctrl-C). Ctrl-C applies an instruction-aware algorithm to dynamically identify per-memory instruction cache reuse behavior. Ctrl-C then adopts feedback control loops to bypass memory requests probabilistically in order to protect cache lines with short reuse distances from early eviction. GPGPU-sim simulation based evaluation shows that Ctrl-C improves the performance of cache sensitive GPGPU workloads by 41.5%, leading to higher cache and interconnect bandwidth utilization with only an insignificant 3.5% area overhead.","PeriodicalId":297899,"journal":{"name":"2016 IEEE 34th International Conference on Computer Design (ICCD)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 34th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2016.7753271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The performance of general-purpose graphics processing units (GPGPUs) is often limited by the efficiency of the memory subsystems, particularly the L1 data caches. Because of the massive multithreading computation paradigm, significant memory resource contention and cache thrashing are often observed in GPGPU workloads. This leads to high cache miss rates and substantial pipeline stall time. In order to improve the efficiency of GPU caches, we propose an instruction-aware control loop based adaptive cache bypassing design (Ctrl-C). Ctrl-C applies an instruction-aware algorithm to dynamically identify per-memory instruction cache reuse behavior. Ctrl-C then adopts feedback control loops to bypass memory requests probabilistically in order to protect cache lines with short reuse distances from early eviction. GPGPU-sim simulation based evaluation shows that Ctrl-C improves the performance of cache sensitive GPGPU workloads by 41.5%, leading to higher cache and interconnect bandwidth utilization with only an insignificant 3.5% area overhead.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ctrl-C:基于指令感知控制环路的gpu自适应缓存旁路
通用图形处理单元(gpgpu)的性能通常受到内存子系统(尤其是L1数据缓存)效率的限制。由于大规模的多线程计算范式,在GPGPU工作负载中经常观察到显著的内存资源争用和缓存抖动。这将导致高缓存丢失率和大量的管道停机时间。为了提高GPU高速缓存的效率,我们提出了一种基于指令感知控制环的自适应高速缓存绕过设计(Ctrl-C)。Ctrl-C应用指令感知算法来动态识别每个内存的指令缓存重用行为。然后Ctrl-C采用反馈控制循环概率地绕过内存请求,以保护重用距离较短的缓存线不被提前删除。基于GPGPU-sim仿真的评估表明,Ctrl-C使对缓存敏感的GPGPU工作负载的性能提高了41.5%,导致更高的缓存和互连带宽利用率,而面积开销仅为微不足道的3.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CNN-MERP: An FPGA-based memory-efficient reconfigurable processor for forward and backward propagation of convolutional neural networks VARIUS-TC: A modular architecture-level model of parametric variation for thin-channel switches A readback based general debugging framework for soft-core processors How logic masking can improve path delay analysis for Hardware Trojan detection ONAC: Optimal number of active cores detector for energy efficient GPU computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1