Detecting Blind Cross-Site Scripting Attacks Using Machine Learning

Gurpreet Kaur, Yasir Malik, Hamman W. Samuel, Fehmi Jaafar
{"title":"Detecting Blind Cross-Site Scripting Attacks Using Machine Learning","authors":"Gurpreet Kaur, Yasir Malik, Hamman W. Samuel, Fehmi Jaafar","doi":"10.1145/3297067.3297096","DOIUrl":null,"url":null,"abstract":"Cross-site scripting (XSS) is a scripting attack targeting web applications by injecting malicious scripts into web pages. Blind XSS is a subset of stored XSS, where an attacker blindly deploys malicious payloads in web pages that are stored in a persistent manner on target servers. Most of the XSS detection techniques used to detect the XSS vulnerabilities are inadequate to detect blind XSS attacks. In this research, we present machine learning based approach to detect blind XSS attacks. Testing results help to identify malicious payloads that are likely to get stored in databases through web applications.","PeriodicalId":340004,"journal":{"name":"International Conference on Signal Processing and Machine Learning","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Signal Processing and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3297067.3297096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Cross-site scripting (XSS) is a scripting attack targeting web applications by injecting malicious scripts into web pages. Blind XSS is a subset of stored XSS, where an attacker blindly deploys malicious payloads in web pages that are stored in a persistent manner on target servers. Most of the XSS detection techniques used to detect the XSS vulnerabilities are inadequate to detect blind XSS attacks. In this research, we present machine learning based approach to detect blind XSS attacks. Testing results help to identify malicious payloads that are likely to get stored in databases through web applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习检测盲跨站脚本攻击
跨站脚本(XSS)是一种针对web应用程序的脚本攻击,通过在web页面中注入恶意脚本。盲目XSS是存储XSS的一个子集,攻击者在以持久方式存储在目标服务器上的网页中盲目地部署恶意有效负载。大多数用于检测XSS漏洞的XSS检测技术都不足以检测盲目的XSS攻击。在这项研究中,我们提出了一种基于机器学习的盲XSS攻击检测方法。测试结果有助于识别可能通过web应用程序存储在数据库中的恶意有效负载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-source Radar Data Fusion via Support Vector Regression Data Link Modeling and Simulation Based on DEVS Implement AI Service into VR Training Automated Detection of Sewer Pipe Defects Based on Cost-Sensitive Convolutional Neural Network Multi-Scale Deep Convolutional Nets with Attention Model and Conditional Random Fields for Semantic Image Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1