Multi-Objective Operator for Optimal Compression and De-compression of Random Signals

Pablo Soto-Quiros, A. Torokhti
{"title":"Multi-Objective Operator for Optimal Compression and De-compression of Random Signals","authors":"Pablo Soto-Quiros, A. Torokhti","doi":"10.1109/IWOBI.2018.8464195","DOIUrl":null,"url":null,"abstract":"New multi-objective operators of random signals are presented in this paper. The new operators improve, under a unrestrictive condition, the performance of known techniques: the generalized Karhunen-Loéve transform, the transform considered by Brillinger and the generalized Brillinger-like transform. This is obtained by particular design of new operators which have more parameters to optimize than that of other operators described in literature.","PeriodicalId":127078,"journal":{"name":"2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)","volume":"32 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWOBI.2018.8464195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

New multi-objective operators of random signals are presented in this paper. The new operators improve, under a unrestrictive condition, the performance of known techniques: the generalized Karhunen-Loéve transform, the transform considered by Brillinger and the generalized Brillinger-like transform. This is obtained by particular design of new operators which have more parameters to optimize than that of other operators described in literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机信号最优压缩解压缩的多目标算子
本文提出了一种新的随机信号多目标算子。在不受限制的条件下,新的算子改进了已知方法的性能:广义karhunen - losamade变换、Brillinger考虑的变换和广义Brillinger-like变换。这是通过特殊设计新的算子来实现的,这些算子比文献中描述的其他算子有更多的参数需要优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart Placement of a Two-Arm Assembly for An Everyday Object Manipulation Humanoid Robot Based on Capability Maps Modules of Correlated Genes in a Gene Expression Regulatory Network of CDDP-Resistant Cancer Cells 2018 IEEE International Work Conference on Bioinspired Intelligence Parallelization of a Denoising Algorithm for Tonal Bioacoustic Signals Using OpenACC Directives Genome Copy Number Feature Selection Based on Chromosomal Regions Alterations and Chemosensitivity Subtypes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1