Labeled Property Graphs: SQL or NoSQL?

Dmitry Anikin, O. Borisenko, Y. Nedumov
{"title":"Labeled Property Graphs: SQL or NoSQL?","authors":"Dmitry Anikin, O. Borisenko, Y. Nedumov","doi":"10.1109/IVMEM.2019.00007","DOIUrl":null,"url":null,"abstract":"There are two main approaches to graph databases: based on RDF model and based on labeled property graph model. RDF is well known and studied, but modern graph databases with labeled property graph model are studied much lesser. In this paper we evaluated several possible solutions for storing and querying graph data using Gremlin - general purpose graph query language from Apache TinkerPop. We used LDBC Graphalytics framework and compared NoSQL-based setups with SQL-based setups. We evaluated JanusGraph on HBase both on single machine and cluster and SQLG on top of PostgreSQL and H2. We used datasets from the different domains and of different sizes up to tens of millions vertices and edges. Evaluation results show that for the used workload SQLG with PostgreSQL is about ten times faster than JanusGraph on HBase and SQLG with H2 performance is in between.","PeriodicalId":166102,"journal":{"name":"2019 Ivannikov Memorial Workshop (IVMEM)","volume":"20 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Ivannikov Memorial Workshop (IVMEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVMEM.2019.00007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

There are two main approaches to graph databases: based on RDF model and based on labeled property graph model. RDF is well known and studied, but modern graph databases with labeled property graph model are studied much lesser. In this paper we evaluated several possible solutions for storing and querying graph data using Gremlin - general purpose graph query language from Apache TinkerPop. We used LDBC Graphalytics framework and compared NoSQL-based setups with SQL-based setups. We evaluated JanusGraph on HBase both on single machine and cluster and SQLG on top of PostgreSQL and H2. We used datasets from the different domains and of different sizes up to tens of millions vertices and edges. Evaluation results show that for the used workload SQLG with PostgreSQL is about ten times faster than JanusGraph on HBase and SQLG with H2 performance is in between.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
标记属性图:SQL或NoSQL?
图数据库有两种主要的方法:基于RDF模型和基于标记属性的图模型。RDF已经得到了广泛的研究,但是对带有标记属性图模型的现代图数据库的研究却很少。在本文中,我们评估了几种使用Apache TinkerPop通用图形查询语言Gremlin存储和查询图形数据的可能解决方案。我们使用了LDBC graphhalytics框架,并比较了基于nosql的设置和基于sql的设置。我们评估了JanusGraph在HBase上的单机和集群,以及在PostgreSQL和H2之上的SQLG。我们使用了来自不同领域和不同大小的数据集,多达数千万个顶点和边。评估结果表明,对于使用的工作负载,使用PostgreSQL的SQLG比使用HBase的JanusGraph快10倍左右,使用H2的SQLG性能介于两者之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Code Caching in PostgreSQL Query JIT-Compiler Constructing Hypothesis Lattices for Virtual Experiments in Data Intensive Research The VM2D Open Source Code for Incompressible Flow Simulation by Using Meshless Lagrangian Vortex Methods on CPU and GPU Labelling Hierarchical Clusters of Scientific Articles An Extensible Approach for Materialized Big Data Integration in Distributed Computation Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1