Reputation-Aware QoS Value Prediction of Web Services

Weiwei Qiu, Zibin Zheng, Xinyu Wang, Xiaohu Yang, Michael R. Lyu
{"title":"Reputation-Aware QoS Value Prediction of Web Services","authors":"Weiwei Qiu, Zibin Zheng, Xinyu Wang, Xiaohu Yang, Michael R. Lyu","doi":"10.1109/SCC.2013.43","DOIUrl":null,"url":null,"abstract":"QoS value prediction of Web services is an important research issue for service recommendation, selection and composition. Collaborative Filtering (CF) is one of the most widely used methods which employs QoS values contributed by similar users to make predictions. Therefore, historical QoS values contributed by different users can have great impacts on prediction results. However, existing Web service QoS value prediction approaches did not take data credibility into consideration, which may impact the prediction accuracy. To address this problem, we propose a reputation-aware QoS value prediction approach, which first calculates the reputation of each user based on their contributed values, and then takes advantage of reputation-based ranking to exclude the values contributed by untrustworthy users. CF QoS prediction approach is finally used to predict the missing QoS values based on the purified dataset. Experimental results show that our approach has higher prediction accuracy than other approaches.","PeriodicalId":370898,"journal":{"name":"2013 IEEE International Conference on Services Computing","volume":"13 13","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Services Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCC.2013.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

Abstract

QoS value prediction of Web services is an important research issue for service recommendation, selection and composition. Collaborative Filtering (CF) is one of the most widely used methods which employs QoS values contributed by similar users to make predictions. Therefore, historical QoS values contributed by different users can have great impacts on prediction results. However, existing Web service QoS value prediction approaches did not take data credibility into consideration, which may impact the prediction accuracy. To address this problem, we propose a reputation-aware QoS value prediction approach, which first calculates the reputation of each user based on their contributed values, and then takes advantage of reputation-based ranking to exclude the values contributed by untrustworthy users. CF QoS prediction approach is finally used to predict the missing QoS values based on the purified dataset. Experimental results show that our approach has higher prediction accuracy than other approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于声誉感知的Web服务QoS值预测
Web服务的QoS值预测是服务推荐、选择和组合的重要研究课题。协同过滤(CF)是应用最广泛的一种方法,它利用相似用户提供的QoS值进行预测。因此,不同用户贡献的历史QoS值会对预测结果产生很大影响。然而,现有的Web服务QoS值预测方法没有考虑数据的可信度,这可能会影响预测的准确性。为了解决这一问题,我们提出了一种基于声誉感知的QoS价值预测方法,该方法首先根据每个用户的贡献值计算其声誉,然后利用基于声誉的排名来排除不可信用户的贡献值。最后利用CF QoS预测方法,在纯化数据集的基础上对缺失的QoS值进行预测。实验结果表明,该方法具有较高的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IoT Mashup as a Service: Cloud-Based Mashup Service for the Internet of Things Cloud Service Negotiation: A Research Roadmap Formal Modeling of Elastic Service-Based Business Processes Security-Aware Resource Allocation in Clouds Integrated Syntax and Semantic Validation for Services Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1