Regional Forecasting with Support Vector Regressions: The Case of Spain

Oscar Claveria, E. Monte, Salvador Torra
{"title":"Regional Forecasting with Support Vector Regressions: The Case of Spain","authors":"Oscar Claveria, E. Monte, Salvador Torra","doi":"10.2139/ssrn.2945533","DOIUrl":null,"url":null,"abstract":"This study attempts to assess the forecasting accuracy of Support Vector Regression (SVR) with regard to other Artificial Intelligence techniques based on statistical learning. We use two different neural networks and three SVR models that differ by the type of kernel used. We focus on international tourism demand to all seventeen regions of Spain. The SVR with a Gaussian kernel shows the best forecasting performance. The best predictions are obtained for longer forecast horizons, which suggest the suitability of machine learning techniques for medium and long term forecasting.","PeriodicalId":114865,"journal":{"name":"ERN: Neural Networks & Related Topics (Topic)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Neural Networks & Related Topics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2945533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This study attempts to assess the forecasting accuracy of Support Vector Regression (SVR) with regard to other Artificial Intelligence techniques based on statistical learning. We use two different neural networks and three SVR models that differ by the type of kernel used. We focus on international tourism demand to all seventeen regions of Spain. The SVR with a Gaussian kernel shows the best forecasting performance. The best predictions are obtained for longer forecast horizons, which suggest the suitability of machine learning techniques for medium and long term forecasting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支持向量回归的区域预测:以西班牙为例
本研究试图评估支持向量回归(SVR)与其他基于统计学习的人工智能技术的预测准确性。我们使用两种不同的神经网络和三种SVR模型,这些模型因所使用的内核类型而不同。我们专注于西班牙所有17个地区的国际旅游需求。高斯核支持向量回归算法的预测效果最好。最好的预测是在较长的预测范围内获得的,这表明机器学习技术适合中长期预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Edgeworth Cycles Forecasting High-Dimensional Covariance Matrices of Asset Returns with Hybrid GARCH-LSTMs Improve the Prediction of Wind Speed using Hyperbolic Tangent Function with Artificial Neural Network Using Deep Q-Networks to Train an Agent to Navigate the Unity ML-Agents Banana Environment What Can Analysts Learn from Artificial Intelligence about Fundamental Analysis?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1