Optimal reduced-order observer-estimators

L. Hong
{"title":"Optimal reduced-order observer-estimators","authors":"L. Hong","doi":"10.1109/ICSYSE.1991.161167","DOIUrl":null,"url":null,"abstract":"An optimal reduced-order filter (in the sense of minimum error variance) which can provide a full vector of state estimates for systems where the dimension of the measurement vector is smaller than that of the state vector and no measurements are noise-free is presented. The optimal reduced-order filter is constructed using two-step L-K transformations for optimization. In step one, a K-transformation is utilized to construct an optimal-observer-type subfilter with order of n-m. An L-transformation is then used to build an optimal complementary subfilter with order m. The L and K matrices are determined to minimize the estimate error variances at each step. The order of the optimal reduced-order filter which combines two subfilters is max(n-m,m). When the dimension of the measurement vector is the same as that of state vector. the optimal reduced-order filter is then the Kalman filter (full order). Since two subfilters can be implemented by two processors in parallel, the proposed filter is computationally efficient.<<ETX>>","PeriodicalId":250037,"journal":{"name":"IEEE 1991 International Conference on Systems Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 1991 International Conference on Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSYSE.1991.161167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

An optimal reduced-order filter (in the sense of minimum error variance) which can provide a full vector of state estimates for systems where the dimension of the measurement vector is smaller than that of the state vector and no measurements are noise-free is presented. The optimal reduced-order filter is constructed using two-step L-K transformations for optimization. In step one, a K-transformation is utilized to construct an optimal-observer-type subfilter with order of n-m. An L-transformation is then used to build an optimal complementary subfilter with order m. The L and K matrices are determined to minimize the estimate error variances at each step. The order of the optimal reduced-order filter which combines two subfilters is max(n-m,m). When the dimension of the measurement vector is the same as that of state vector. the optimal reduced-order filter is then the Kalman filter (full order). Since two subfilters can be implemented by two processors in parallel, the proposed filter is computationally efficient.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最优降阶观测器估计器
提出了一种最优降阶滤波器(误差方差最小意义上的降阶滤波器),它可以为测量向量的维数小于状态向量的维数且没有测量值是无噪声的系统提供完整的状态估计向量。利用两步L-K变换构造了最优降阶滤波器。在第一步中,利用k变换构造一个阶为n-m的最优观察者类型子过滤器。然后使用L变换来构建m阶的最优互补子滤波器。确定L和K矩阵以最小化每一步的估计误差方差。结合两个子滤波器的最优降阶滤波器的阶数为max(n-m,m)。当测量向量的维数与状态向量的维数相同时。最优降阶滤波器则是卡尔曼滤波器(全阶)。由于两个子滤波器可以由两个处理器并行实现,因此所提出的滤波器具有计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling and simulation of a heat exchanger Multidisciplinary modeling and design of a space system Robust stabilization of an aero-elastic system Inductive character learning and classification with genetic algorithms Determining bus arbitration policies and data transfer techniques for multiprocessor systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1