Exploring the Sensitivity of Hosting Capacity Evaluations to Various Simulation Characteristics

M. J. Chihota, B. Bekker
{"title":"Exploring the Sensitivity of Hosting Capacity Evaluations to Various Simulation Characteristics","authors":"M. J. Chihota, B. Bekker","doi":"10.1109/UPEC55022.2022.9917972","DOIUrl":null,"url":null,"abstract":"The increasing penetration of distributed energy resources (DERs) and concerns over the associated technical issues have stimulated research towards evaluating the loadability of existing networks with DERs, termed hosting capacity (HC). Various HC methodologies have been proposed and differ in four primary characteristics: (1) the characterization of input characteristics, including stochasticity, variability, and allocation uncertainty, (2) the formulation of the load flow to accommodate identified input uncertainties, (3) characterization and analysis of uncertain impact assessment outputs, and (4) HC quantification and characterization, including the scope of technical parameters considered. This paper investigates the impact of these aspects on the quality of conclusions on feeder HC on distribution networks. An adaptive stochastic framework involving a Monte-Carlo simulation for DER allocation and a probabilistic load flow method is used to solve the HC problem according to the selected simulation characteristics. The analysis is carried out on an LV residential low voltage feeder with electric vehicles. The sensitivity results encourage the development of comprehensive HC formulations and simulations that generate reliable, consistent, and replicable HC solutions and conclusions. The results have significant implications for the optimal regulation of DERs.","PeriodicalId":371561,"journal":{"name":"2022 57th International Universities Power Engineering Conference (UPEC)","volume":"267 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 57th International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC55022.2022.9917972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The increasing penetration of distributed energy resources (DERs) and concerns over the associated technical issues have stimulated research towards evaluating the loadability of existing networks with DERs, termed hosting capacity (HC). Various HC methodologies have been proposed and differ in four primary characteristics: (1) the characterization of input characteristics, including stochasticity, variability, and allocation uncertainty, (2) the formulation of the load flow to accommodate identified input uncertainties, (3) characterization and analysis of uncertain impact assessment outputs, and (4) HC quantification and characterization, including the scope of technical parameters considered. This paper investigates the impact of these aspects on the quality of conclusions on feeder HC on distribution networks. An adaptive stochastic framework involving a Monte-Carlo simulation for DER allocation and a probabilistic load flow method is used to solve the HC problem according to the selected simulation characteristics. The analysis is carried out on an LV residential low voltage feeder with electric vehicles. The sensitivity results encourage the development of comprehensive HC formulations and simulations that generate reliable, consistent, and replicable HC solutions and conclusions. The results have significant implications for the optimal regulation of DERs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探讨承载能力评估对各种仿真特性的敏感性
分布式能源(DERs)的日益普及以及对相关技术问题的关注刺激了对现有分布式能源网络可负载性评估的研究,称为托管容量(HC)。已经提出了各种HC方法,并在四个主要特征上有所不同:(1)输入特征的表征,包括随机性、可变性和分配不确定性;(2)为适应已确定的输入不确定性而制定的负荷流;(3)不确定影响评估输出的表征和分析;(4)HC量化和表征,包括考虑的技术参数范围。本文研究了这些因素对配电网馈线HC结论质量的影响。根据所选择的仿真特征,采用蒙特卡罗模拟和概率潮流法相结合的自适应随机框架求解HC问题。对某低压家用电动汽车馈线进行了分析。灵敏度结果鼓励开发全面的HC配方和模拟,以产生可靠、一致和可复制的HC解决方案和结论。研究结果对der的优化调控具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Evaluation of Extending an Existing Substation Automation System using IEC 61850 Time Characteristic Curve Based Earth Fault Relay Selectivity Assessment for Optimal Overcurrent Relay Coordination in Distribution Networks Impact of the Photovoltaic Array Configuration on its Performance under Partial Shading Conditions The Impacts of The Temperature-Humidity Fluctuations in Substations and Practical Experimental Applications Synthesis and Characterization of Multi-level Pseudo-Random Sequences as Excitation Signals for System Identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1