Medium-Voltage Cascaded H-Bridge Perturbation Injection Converter for AC and DC System Identification

M. Petković, S. Milovanović, D. Dujić
{"title":"Medium-Voltage Cascaded H-Bridge Perturbation Injection Converter for AC and DC System Identification","authors":"M. Petković, S. Milovanović, D. Dujić","doi":"10.1109/INDEL50386.2020.9266191","DOIUrl":null,"url":null,"abstract":"The power system have lately seen a tendency of increasing share of renewable energy sources and integration of power electronics equipment. The concept of distributed power generation introduces various stability-related challenges into the power system operation. Consequently, safe and reliable operation imposes the need to understand, describe and estimate the system stability through impedance-admittance measurements and identification. As in a present day network configuration the sources and loads can either be of ac or de nature a flexible device capable of ac or de measurements in required. The four-quadrant Cascaded H-Bridge topology features high output voltage resolution and high effective switching frequency which enables high-dynamic, high-fidelity voltage perturbation injection for medium voltage measurements. Mover through the hardware and control reconfiguration it is able to operate both as an ac or a de device. This paper presents the flexible medium voltage Cascaded H-Bridge converter for impedance / admittance measurement. The effectiveness and flexibility of the topology is shown through a case study where the terminal characteristics of a Modular Multilevel Converter are measured and the influence of different parameters on the shape of the characteristics is evaluated.","PeriodicalId":369921,"journal":{"name":"2020 International Symposium on Industrial Electronics and Applications (INDEL)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Symposium on Industrial Electronics and Applications (INDEL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDEL50386.2020.9266191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The power system have lately seen a tendency of increasing share of renewable energy sources and integration of power electronics equipment. The concept of distributed power generation introduces various stability-related challenges into the power system operation. Consequently, safe and reliable operation imposes the need to understand, describe and estimate the system stability through impedance-admittance measurements and identification. As in a present day network configuration the sources and loads can either be of ac or de nature a flexible device capable of ac or de measurements in required. The four-quadrant Cascaded H-Bridge topology features high output voltage resolution and high effective switching frequency which enables high-dynamic, high-fidelity voltage perturbation injection for medium voltage measurements. Mover through the hardware and control reconfiguration it is able to operate both as an ac or a de device. This paper presents the flexible medium voltage Cascaded H-Bridge converter for impedance / admittance measurement. The effectiveness and flexibility of the topology is shown through a case study where the terminal characteristics of a Modular Multilevel Converter are measured and the influence of different parameters on the shape of the characteristics is evaluated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于交直流系统辨识的中压级联h桥微扰注入变换器
近年来,电力系统出现了可再生能源比重增加和电力电子设备一体化的趋势。分布式发电的概念给电力系统的运行带来了各种与稳定性相关的挑战。因此,安全可靠的运行需要通过阻抗导纳测量和识别来理解、描述和估计系统的稳定性。在当今的网络配置中,源和负载既可以是交流的,也可以是能够根据需要进行交流或电压测量的灵活设备。四象限级联h桥拓扑具有高输出电压分辨率和高有效开关频率,可实现中压测量的高动态,高保真电压扰动注入。通过硬件和控制重新配置,它既可以作为交流设备也可以作为设备运行。介绍了一种用于阻抗导纳测量的柔性中压级联h桥变换器。通过对模块化多电平变换器的终端特性进行测量,并分析了不同参数对终端特性形状的影响,证明了该拓扑结构的有效性和灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Monitoring of 6TiSCH infrastructure with MQTT and Zabbix NMS software CMOS IC Design from Schematic Level to Silicon within IC Curricula Using Free CAD Software Multiobjective Feasibility Analysis of Emerging Smart Grid Technologies and Concepts Laboratory Setup for Fault Detection on Overhead Power Lines Based on Magnetic Field Measurement Smart home system solution with the goal of minimizing water consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1