Proposal of a probabilistic believes fusion framework. Application to range data fusion

E. Piat, D. Meizel
{"title":"Proposal of a probabilistic believes fusion framework. Application to range data fusion","authors":"E. Piat, D. Meizel","doi":"10.1109/IROS.1997.656545","DOIUrl":null,"url":null,"abstract":"In order to perform occupancy grid building of in-door environmental for autonomous mobile robot, this paper presents a methodology allowing the merging of beliefs associated to hypotheses represented by binary proposition H like \"this particular element belongs to this particular set\". In this paper, elements processed are vectors representing points which belong to obstacles. Belief notion is introduced in the combined framework of logic and probability theory and the problem is posed as follows: if different sensors give their own belief in an hypotheses H, how is it possible to merge these believes? Two cases necessary to solve formally occupancy grid building are developed: either sensors characterize different points or sensors characterize the same point. Obtained results are applied to ultrasonic range data fusion.","PeriodicalId":408848,"journal":{"name":"Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97","volume":"10 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1997.656545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In order to perform occupancy grid building of in-door environmental for autonomous mobile robot, this paper presents a methodology allowing the merging of beliefs associated to hypotheses represented by binary proposition H like "this particular element belongs to this particular set". In this paper, elements processed are vectors representing points which belong to obstacles. Belief notion is introduced in the combined framework of logic and probability theory and the problem is posed as follows: if different sensors give their own belief in an hypotheses H, how is it possible to merge these believes? Two cases necessary to solve formally occupancy grid building are developed: either sensors characterize different points or sensors characterize the same point. Obtained results are applied to ultrasonic range data fusion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提出了一种概率信度融合框架。在测距数据融合中的应用
为了实现自主移动机器人室内环境的占用网格构建,本文提出了一种方法,允许合并与二元命题H表示的假设相关的信念,如“这个特定的元素属于这个特定的集合”。在本文中,处理的元素是表示属于障碍物的点的向量。在逻辑和概率论的结合框架中引入了信念概念,并提出了这样的问题:如果不同的传感器对一个假设H给出了自己的信念,这些信念如何可能合并?提出了正式解决占用网格构建所需的两种情况:传感器表征不同的点或传感器表征相同的点。将所得结果应用于超声距离数据融合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesis of actively adjustable frequency modulators via redundant actuation: the case for a five-bar finger mechanism Performance of emotional group robotic system using mass psychology Initial results from vision-based control of the Ames Marsokhod rover Information sharing among multiple robots for cooperation in cellular robotic system A wheeled multijoint robot for autonomous sewer inspection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1