An integrated model for next page access prediction

F. Khalil, Jiuyong Li, Hua Wang
{"title":"An integrated model for next page access prediction","authors":"F. Khalil, Jiuyong Li, Hua Wang","doi":"10.1504/IJKWI.2009.027925","DOIUrl":null,"url":null,"abstract":"Accurate next web page prediction benefits many applications, e-business in particular. The most widely used techniques for this purpose are Markov Model, association rules and clustering. However, each of these techniques has its own limitations, especially when it comes to accuracy and space complexity. This paper presents an improved prediction accuracy and state space complexity by using novel approaches that combine clustering, association rules and Markov Models. The three techniques are integrated together to maximise their strengths. The integration model has been shown to achieve better prediction accuracy than individual and other integrated models.","PeriodicalId":113936,"journal":{"name":"Int. J. Knowl. Web Intell.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Web Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJKWI.2009.027925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

Accurate next web page prediction benefits many applications, e-business in particular. The most widely used techniques for this purpose are Markov Model, association rules and clustering. However, each of these techniques has its own limitations, especially when it comes to accuracy and space complexity. This paper presents an improved prediction accuracy and state space complexity by using novel approaches that combine clustering, association rules and Markov Models. The three techniques are integrated together to maximise their strengths. The integration model has been shown to achieve better prediction accuracy than individual and other integrated models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
下一页访问预测的集成模型
准确的下一个网页预测有利于许多应用程序,特别是电子商务。为此最广泛使用的技术是马尔可夫模型、关联规则和聚类。然而,每种技术都有其自身的局限性,特别是在准确性和空间复杂性方面。本文采用聚类、关联规则和马尔可夫模型相结合的新方法,提高了预测精度和状态空间复杂度。这三种技术被整合在一起,以最大限度地发挥其优势。综合模型比单独模型和其他综合模型具有更好的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MOSSA: a morpho-semantic knowledge extraction system for Arabic information retrieval Learning by redesigning programs: support system for understanding design policy in software design patterns Representations of psychological function based on ontology for collaborative design of peer support services for diabetic patients Learning how to learn with knowledge building process through experiences in new employee training: a case study on learner-mentor interaction model SKACICM a method for development of knowledge management and innovation system e-KnowSphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1