Neural network based approach for predicting maximal wall shear stress in the artery

M. Blagojevic, Milos D. Radovic, M. Radovic, N. Filipovic
{"title":"Neural network based approach for predicting maximal wall shear stress in the artery","authors":"M. Blagojevic, Milos D. Radovic, M. Radovic, N. Filipovic","doi":"10.1109/BIBE.2015.7367713","DOIUrl":null,"url":null,"abstract":"This paper describes the use of artificial neural networks in predicting value and position maximal wall shear stress in aneurysm. For the purpose of neural network training, back propagation algorithm was used. Input data in the network are geometric parameters of aneurysm model. Obtained results indicate the possibility of a successful application of neural networks in the problems of predicting certain parameters of arteries. Future work relates to the creation of a web-based application that allows users to display the results.","PeriodicalId":422807,"journal":{"name":"2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2015.7367713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes the use of artificial neural networks in predicting value and position maximal wall shear stress in aneurysm. For the purpose of neural network training, back propagation algorithm was used. Input data in the network are geometric parameters of aneurysm model. Obtained results indicate the possibility of a successful application of neural networks in the problems of predicting certain parameters of arteries. Future work relates to the creation of a web-based application that allows users to display the results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的动脉壁最大剪应力预测方法
本文介绍了人工神经网络在动脉瘤壁面最大剪应力预测中的应用。为了训练神经网络,采用了反向传播算法。网络中的输入数据为动脉瘤模型的几何参数。所得结果表明,神经网络在动脉某些参数预测问题上有成功应用的可能性。未来的工作涉及到创建一个基于web的应用程序,允许用户显示结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated SOSORT-recommended angles measurement in patients with adolescent idiopathic scoliosis Estimating changes in a cognitive performance using heart rate variability Some examples on the performance of density functional theory in the description of bioinorganic systems and processes Modeling the metabolism of escherichia coli under oxygen gradients with dynamically changing flux bounds An automated approach to conduct effective on-site presumptive drug tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1