A Tensorial LMS Algorithm for Sparse System Based on Kronecker Product Decomposition

Luming Wang, Jiongliang Li, Liming Zhong, Yuanlei Qi, Tao Li, Qiqi He
{"title":"A Tensorial LMS Algorithm for Sparse System Based on Kronecker Product Decomposition","authors":"Luming Wang, Jiongliang Li, Liming Zhong, Yuanlei Qi, Tao Li, Qiqi He","doi":"10.1109/CCISP55629.2022.9974544","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a sparse constrained tensorial least mean square (LMS) algorithm, which is suitable for the identification of multilinear sparse systems. The greatest challenge involves a large parameter space, which can effectively form a sparse tensor. Its main idea is to exploit a method based Kronecker product decomposition (KPD), so that the global sparse impulse response can be estimated by using a combination of shorter sparse adaptive filters, which reduces the complexity of each update. In addition, these shorter sparse sub filters are estimated by adding a lp norm based sparsity promoting penalty function to the objective function. Simulation results show the proposed algorithm can be a good candidate for sparse system identification and outperforms traditional sparse LMS algorithms in performance.","PeriodicalId":431851,"journal":{"name":"2022 7th International Conference on Communication, Image and Signal Processing (CCISP)","volume":"242 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Communication, Image and Signal Processing (CCISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCISP55629.2022.9974544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a sparse constrained tensorial least mean square (LMS) algorithm, which is suitable for the identification of multilinear sparse systems. The greatest challenge involves a large parameter space, which can effectively form a sparse tensor. Its main idea is to exploit a method based Kronecker product decomposition (KPD), so that the global sparse impulse response can be estimated by using a combination of shorter sparse adaptive filters, which reduces the complexity of each update. In addition, these shorter sparse sub filters are estimated by adding a lp norm based sparsity promoting penalty function to the objective function. Simulation results show the proposed algorithm can be a good candidate for sparse system identification and outperforms traditional sparse LMS algorithms in performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Kronecker积分解的稀疏系统张量LMS算法
本文提出了一种适用于多线性稀疏系统识别的稀疏约束张量最小均方(LMS)算法。最大的挑战是一个大的参数空间,它可以有效地形成一个稀疏张量。其主要思想是利用基于Kronecker积分解(KPD)的方法,利用较短的稀疏自适应滤波器组合来估计全局稀疏脉冲响应,从而降低了每次更新的复杂性。此外,通过在目标函数中加入基于lp范数的稀疏性提升惩罚函数来估计这些较短的稀疏子滤波器。仿真结果表明,该算法可以很好地用于稀疏系统识别,性能优于传统的稀疏LMS算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A reliable intra-relay cooperative relay network coupling with spatial modulation for the dynamic V2V communication Research on PCEP Extension for VLAN-based Traffic Forwarding in cloud network integration Analysis of the effect of carbon emissions on meteorological factors in Yunnan province Small Sample Signal Modulation Recognition based on Higher-order Cumulants and CatBoost AFMTD: Anchor-free Frame for Multi-scale Target Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1