BADGR: A practical GHR implementation for TAGE branch predictors

David J. Schlais, Mikko H. Lipasti
{"title":"BADGR: A practical GHR implementation for TAGE branch predictors","authors":"David J. Schlais, Mikko H. Lipasti","doi":"10.1109/ICCD.2016.7753338","DOIUrl":null,"url":null,"abstract":"In this work, we explore global history register (GHR) implementations for Tagged Geometric length (TAGE) style branch predictors with speculative updates. We break down the requirements to both update and recover TAGE predictors' history registers during normal operation and after mispeculation, discussing where various designs exhibit large checkpoint and/or operation overheads. To reduce these inefficiencies, we introduce BADGR, a novel GHR design for TAGE predictors that lowers power consumption and chip area over naive checkpointing techniques by 90% and 85%, respectively.","PeriodicalId":297899,"journal":{"name":"2016 IEEE 34th International Conference on Computer Design (ICCD)","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 34th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2016.7753338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this work, we explore global history register (GHR) implementations for Tagged Geometric length (TAGE) style branch predictors with speculative updates. We break down the requirements to both update and recover TAGE predictors' history registers during normal operation and after mispeculation, discussing where various designs exhibit large checkpoint and/or operation overheads. To reduce these inefficiencies, we introduce BADGR, a novel GHR design for TAGE predictors that lowers power consumption and chip area over naive checkpointing techniques by 90% and 85%, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BADGR:用于TAGE分支预测器的实用GHR实现
在这项工作中,我们探索了带有推测性更新的标记几何长度(TAGE)风格分支预测器的全局历史寄存器(GHR)实现。我们分解了在正常操作期间和错误计算之后更新和恢复TAGE预测器历史寄存器的需求,讨论了各种设计在哪些地方显示出较大的检查点和/或操作开销。为了降低这些低效率,我们引入了BADGR,这是一种用于TAGE预测器的新型GHR设计,与原始检查点技术相比,它的功耗和芯片面积分别降低了90%和85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CNN-MERP: An FPGA-based memory-efficient reconfigurable processor for forward and backward propagation of convolutional neural networks VARIUS-TC: A modular architecture-level model of parametric variation for thin-channel switches A readback based general debugging framework for soft-core processors How logic masking can improve path delay analysis for Hardware Trojan detection ONAC: Optimal number of active cores detector for energy efficient GPU computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1