Likelihood-based analysis of longitudinal count data using a generalized Poisson model

P. Toscas, M. Faddy
{"title":"Likelihood-based analysis of longitudinal count data using a generalized Poisson model","authors":"P. Toscas, M. Faddy","doi":"10.1191/1471082X03st050oa","DOIUrl":null,"url":null,"abstract":"Models based on a generalization of the simple Poisson process are discussed and illustrated with an analysis of some longitudinal count data on frequencies of epileptic fits. The models enable a broad class of discrete distributions to be constructed, which cover a variety of dispersion properties that can be characterized in an intuitive and appealing way by a simple parameterization. This class includes the Poisson and negative binomial distributions as well as other distributions with greater dispersion than Poisson, and also distributions underdispersed relative to the Poisson distribution. Comparing a number of analyses of the data shows that some covariates have a more significant effect using this modelling than from using mixed Poisson models. It is argued that this could be due to the mixed Poisson models used in the other analyses not providing an appropriate description of the residual variation, with the greater flexibility of the generalized Poisson modelling generally enabling more critical assessment of covariate effects than more standard mixed Poisson modelling.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082X03st050oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Models based on a generalization of the simple Poisson process are discussed and illustrated with an analysis of some longitudinal count data on frequencies of epileptic fits. The models enable a broad class of discrete distributions to be constructed, which cover a variety of dispersion properties that can be characterized in an intuitive and appealing way by a simple parameterization. This class includes the Poisson and negative binomial distributions as well as other distributions with greater dispersion than Poisson, and also distributions underdispersed relative to the Poisson distribution. Comparing a number of analyses of the data shows that some covariates have a more significant effect using this modelling than from using mixed Poisson models. It is argued that this could be due to the mixed Poisson models used in the other analyses not providing an appropriate description of the residual variation, with the greater flexibility of the generalized Poisson modelling generally enabling more critical assessment of covariate effects than more standard mixed Poisson modelling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用广义泊松模型对纵向计数数据进行似然分析
本文讨论了基于简单泊松过程的一般化模型,并通过对癫痫发作频率的一些纵向计数数据的分析加以说明。这些模型能够构建广泛的离散分布,其中涵盖了各种分散特性,这些特性可以通过简单的参数化以直观和吸引人的方式进行表征。这类分布包括泊松分布和负二项分布,以及其他比泊松分布更分散的分布,以及相对于泊松分布的欠分散分布。对数据的大量分析进行比较表明,使用该模型的一些协变量比使用混合泊松模型的协变量具有更显著的影响。有人认为,这可能是由于其他分析中使用的混合泊松模型没有提供对剩余变化的适当描述,广义泊松模型具有更大的灵活性,通常能够比更标准的混合泊松模型更严格地评估协变量效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of auxiliary data in semi-parametric spatial regression with nonignorable missing responses Bayesian modeling for genetic association in case-control studies: accounting for unknown population substructure GLMM approach to study the spatial and temporal evolution of spikes in the small intestine Comparing nonparametric surfaces Analyzing the emergence times of permanent teeth: an example of modeling the covariance matrix with interval-censored data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1