Privacy-Preserving Clustering: A New Approach Based on Invariant Order Encryption

Mihail-Iulian Plesa, Cezar Plesca
{"title":"Privacy-Preserving Clustering: A New Approach Based on Invariant Order Encryption","authors":"Mihail-Iulian Plesa, Cezar Plesca","doi":"10.32754/JMT.2020.2.10","DOIUrl":null,"url":null,"abstract":"Digital Object Identifier 10.32754/JMT.2020.2.10 65 1Abstract—Cloud computing is increasingly used. One main use of cloud computing is the running of a machine learning algorithm. Due to the large amount of data required for these algorithms, they can no longer be run on personal computers. Uploading personal data to the cloud automatically raises the issues of confidentiality of this data. In this paper, we show through a series of experiments that an order-preserving encryption algorithm can be applied to guarantee the confidentiality of the input of two well-known clustering algorithms: K-Means and DBSCAN. We show that K-Means can be modified to be applied over the encrypted data. We also proposed a slight improvement to an order-preserving encryption scheme to ensure that it is randomized, therefore increasing its security level. Finally, after studying the performance of clustering algorithms over encrypted data we show a practical application of this idea, namely the color reduction over an encrypted image.","PeriodicalId":315050,"journal":{"name":"Journal of Military Technology","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Military Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32754/JMT.2020.2.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Digital Object Identifier 10.32754/JMT.2020.2.10 65 1Abstract—Cloud computing is increasingly used. One main use of cloud computing is the running of a machine learning algorithm. Due to the large amount of data required for these algorithms, they can no longer be run on personal computers. Uploading personal data to the cloud automatically raises the issues of confidentiality of this data. In this paper, we show through a series of experiments that an order-preserving encryption algorithm can be applied to guarantee the confidentiality of the input of two well-known clustering algorithms: K-Means and DBSCAN. We show that K-Means can be modified to be applied over the encrypted data. We also proposed a slight improvement to an order-preserving encryption scheme to ensure that it is randomized, therefore increasing its security level. Finally, after studying the performance of clustering algorithms over encrypted data we show a practical application of this idea, namely the color reduction over an encrypted image.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
隐私保护聚类:一种基于不变序加密的新方法
摘要:云计算的应用越来越广泛。云计算的一个主要用途是运行机器学习算法。由于这些算法需要大量的数据,它们不能再在个人电脑上运行。将个人数据上传到云端会自动引发这些数据的机密性问题。在本文中,我们通过一系列的实验证明了一种保序加密算法可以用于保证两种著名的聚类算法:K-Means和DBSCAN的输入机密性。我们证明K-Means可以被修改以应用于加密的数据。我们还提出了对保序加密方案的稍微改进,以确保它是随机的,从而提高其安全级别。最后,在研究了加密数据上聚类算法的性能后,我们展示了该思想的实际应用,即加密图像上的颜色还原。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of Different Bracing Systems on the Performance of Metallic Tower Techniques Used for Geospatial Big Data Collection, Storage and Analysis Study on the Use of 3D Scanning as a Verification Method in Technical Quality Control Long-term Preservation of Digital Signatures: a Need-to-have or a Nice-to-have? GPU-Based Normalized Compression Distance for Satellite Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1