G-DCNN: GAN based Deep 2D-CNN for COVID-19 Classification

Suja A. Alex, N. Jhanjhi, N. A. Khan, H. S. Husin
{"title":"G-DCNN: GAN based Deep 2D-CNN for COVID-19 Classification","authors":"Suja A. Alex, N. Jhanjhi, N. A. Khan, H. S. Husin","doi":"10.1109/IVIT55443.2022.10033406","DOIUrl":null,"url":null,"abstract":"Recent progress in COVID-19 detection techniques involve deep learning models. The patient’s image data like Chest X-Ray Images, CT-scan data help the physician for analyzing whether the patient is COVID-19 positive or negative. However, huge data size is essential for improving the classification accuracy of deep learning model. Data Augmentation (DA) is a promising solution to generate synthetic samples of data. Sampling is a traditional data augmentation technique to generate synthetic samples. Recently, Generative Adversarial Networks (GAN) have declared in generating high quality synthetic data from acutal small data to treat imbalance issue. This work proposed a method called GAN based Deep 2D-CNN (G-DCNN) for COVID-19 recognition. In this study, GAN has been used for synthesizing Chest X-Ray and CT-scan images followed by Deep 2D-CNN with the goal of detecting COVID-19.","PeriodicalId":325667,"journal":{"name":"2022 International Visualization, Informatics and Technology Conference (IVIT)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Visualization, Informatics and Technology Conference (IVIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVIT55443.2022.10033406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent progress in COVID-19 detection techniques involve deep learning models. The patient’s image data like Chest X-Ray Images, CT-scan data help the physician for analyzing whether the patient is COVID-19 positive or negative. However, huge data size is essential for improving the classification accuracy of deep learning model. Data Augmentation (DA) is a promising solution to generate synthetic samples of data. Sampling is a traditional data augmentation technique to generate synthetic samples. Recently, Generative Adversarial Networks (GAN) have declared in generating high quality synthetic data from acutal small data to treat imbalance issue. This work proposed a method called GAN based Deep 2D-CNN (G-DCNN) for COVID-19 recognition. In this study, GAN has been used for synthesizing Chest X-Ray and CT-scan images followed by Deep 2D-CNN with the goal of detecting COVID-19.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
G-DCNN:基于GAN的深度2D-CNN新冠肺炎分类
COVID-19检测技术的最新进展涉及深度学习模型。患者的图像数据,如胸部x线图像、ct扫描数据,有助于医生分析患者是阳性还是阴性。然而,庞大的数据规模对于提高深度学习模型的分类精度至关重要。数据增强(Data Augmentation, DA)是一种很有前途的生成数据合成样本的解决方案。采样是一种传统的生成合成样本的数据增强技术。近年来,生成式对抗网络(GAN)致力于从实际的小数据中生成高质量的合成数据,以解决不平衡问题。这项工作提出了一种基于GAN的深度2D-CNN (G-DCNN)的新冠肺炎识别方法。在本研究中,GAN被用于合成胸部x射线和ct扫描图像,然后是Deep 2D-CNN,目的是检测COVID-19。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Soil Nutrient Deficiency Detection of Lime Trees using Signal-based Deep Learning Impact of excessive use of social media on students learning performance: Gratifications theory perspective Benefits of Digital Printing for Fashion Entrepreneurs: A Case Study at Alia Bastamam Behavioural Characteristics and Cyberbullying Profiles Among Malaysian Youngsters Improved Classification using Extended Hybrid Feature Selection Approach with Dimensionality Reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1