Online learning for demand response

D. Kalathil, R. Rajagopal
{"title":"Online learning for demand response","authors":"D. Kalathil, R. Rajagopal","doi":"10.1109/ALLERTON.2015.7447007","DOIUrl":null,"url":null,"abstract":"Demand response is a key component of existing and future grid systems facing increased variability and peak demands. Scaling demand response requires efficiently predicting individual responses for large numbers of consumers while selecting the right ones to signal. This paper proposes a new online learning problem that captures consumer diversity, messaging fatigue and response prediction. We use the framework of multi-armed bandits model to address this problem. This yields simple and easy to implement index based learning algorithms with provable performance guarantees.","PeriodicalId":112948,"journal":{"name":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"210 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2015.7447007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Demand response is a key component of existing and future grid systems facing increased variability and peak demands. Scaling demand response requires efficiently predicting individual responses for large numbers of consumers while selecting the right ones to signal. This paper proposes a new online learning problem that captures consumer diversity, messaging fatigue and response prediction. We use the framework of multi-armed bandits model to address this problem. This yields simple and easy to implement index based learning algorithms with provable performance guarantees.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
需求响应的在线学习
需求响应是当前和未来电网系统面临日益增加的可变性和峰值需求的关键组成部分。扩展需求响应需要有效地预测大量消费者的个人响应,同时选择正确的信号。本文提出了一个新的在线学习问题,该问题捕获了消费者多样性、消息传递疲劳和响应预测。我们使用多武装强盗模型的框架来解决这个问题。这产生了简单且易于实现的基于索引的学习算法,具有可证明的性能保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust temporal logic model predictive control Efficient replication of queued tasks for latency reduction in cloud systems Cut-set bound is loose for Gaussian relay networks Improving MIMO detection performance in presence of phase noise using norm difference criterion Utility fair RAT selection in multi-homed LTE/802.11 networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1