{"title":"Mini-Batch Ensemble Method on Keystroke Dynamics based User Authentication","authors":"Jiacang Ho, Dae-Ki Kang","doi":"10.7236/IJASC.2016.5.3.40","DOIUrl":null,"url":null,"abstract":"The internet allows the information to flow at anywhere in anytime easily. Unfortunately, the network also becomes a great tool for the criminals to operate cybercrimes such as identity theft. To prevent the issue, using a very complex password is not a very encouraging method. Alternatively, keystroke dynamics helps the user to solve the problem. Keystroke dynamics is the information of timing details when a user presses a key or releases a key. A machine can learn a user typing behavior from the information integrate with a proper machine learning algorithm. In this paper, we have proposed mini-batch ensemble (MIBE) method which does the preprocessing on the original dataset and then produces multiple mini batches in the end. The mini batches are then trained by a machine learning algorithm. From the experimental result, we have shown the improvement of the performance for each base algorithm.","PeriodicalId":297506,"journal":{"name":"The International Journal of Advanced Smart Convergence","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Advanced Smart Convergence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7236/IJASC.2016.5.3.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The internet allows the information to flow at anywhere in anytime easily. Unfortunately, the network also becomes a great tool for the criminals to operate cybercrimes such as identity theft. To prevent the issue, using a very complex password is not a very encouraging method. Alternatively, keystroke dynamics helps the user to solve the problem. Keystroke dynamics is the information of timing details when a user presses a key or releases a key. A machine can learn a user typing behavior from the information integrate with a proper machine learning algorithm. In this paper, we have proposed mini-batch ensemble (MIBE) method which does the preprocessing on the original dataset and then produces multiple mini batches in the end. The mini batches are then trained by a machine learning algorithm. From the experimental result, we have shown the improvement of the performance for each base algorithm.