Coronary Illness Prediction Using Random Forest Classifier

Rekha G, Shanthini B, Ranjith Kumar V
{"title":"Coronary Illness Prediction Using Random Forest Classifier","authors":"Rekha G, Shanthini B, Ranjith Kumar V","doi":"10.3233/apc210285","DOIUrl":null,"url":null,"abstract":"Heart diseases or Cardiovascular Diseases (CVDs) are the main cause of death on the planet throughout the most recent years and become the most dangerous disease in India and the entire world. The UCI repository is utilized to calculate the exactness of the AI calculations for foreseeing coronary illness, as k-nearest neighbor, decision tree, linear regression, and support vector machine. Different indications like chest pain, fasting of heartbeat, etc., are referenced. Large datasets, which are not available in medical and clinical research, are required in order to apply deep learning techniques. Surrogate data is generated from Cleveland dataset. The predicted results show that there is an improvement in classification accuracy. Heart disease is one of the most challenging diseases to diagnose as it is the most recognized killer in the present day. Utilizing AI algorithms, this paper gives anticipating coronary illness. Here, we will use the various machine learning algorithms such as Support Vector Machine, Random Forest, KNN, Naive Bayes, Decision Tree and LR.","PeriodicalId":429440,"journal":{"name":"Recent Trends in Intensive Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Trends in Intensive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/apc210285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Heart diseases or Cardiovascular Diseases (CVDs) are the main cause of death on the planet throughout the most recent years and become the most dangerous disease in India and the entire world. The UCI repository is utilized to calculate the exactness of the AI calculations for foreseeing coronary illness, as k-nearest neighbor, decision tree, linear regression, and support vector machine. Different indications like chest pain, fasting of heartbeat, etc., are referenced. Large datasets, which are not available in medical and clinical research, are required in order to apply deep learning techniques. Surrogate data is generated from Cleveland dataset. The predicted results show that there is an improvement in classification accuracy. Heart disease is one of the most challenging diseases to diagnose as it is the most recognized killer in the present day. Utilizing AI algorithms, this paper gives anticipating coronary illness. Here, we will use the various machine learning algorithms such as Support Vector Machine, Random Forest, KNN, Naive Bayes, Decision Tree and LR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机森林分类器的冠心病预测
近年来,心脏病或心血管疾病(cvd)是地球上死亡的主要原因,成为印度和全世界最危险的疾病。利用UCI库计算人工智能预测冠状动脉疾病计算的准确性,如k近邻、决策树、线性回归和支持向量机。不同的适应症,如胸痛,心跳加快等。为了应用深度学习技术,需要在医学和临床研究中无法获得的大型数据集。代理数据是从Cleveland数据集生成的。预测结果表明,分类精度有所提高。心脏病是诊断最具挑战性的疾病之一,因为它是当今最公认的杀手。利用人工智能算法对冠心病进行预测。在这里,我们将使用各种机器学习算法,如支持向量机,随机森林,KNN,朴素贝叶斯,决策树和LR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Agricultural Product Supply Chain Management Using Blockchain Technology: Concept An Image Encryption Technique Based on Logistic Sine Map and an Encrypted Image Retrieval Using DCT Frequency Study on SDN with Security Issues Using Mininet Smart Ambulance System with Remote Knowledge Communications Through Cloud Diabetes Risk Forecasting Using Logistic Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1