An Effective Particle Swarm Optimization Algorithm with Social Weight in Solving Economic Dispatch Problem Considering Network Losses

Jinglei Guo, C. Jin, Wei Liu, W. Zhou
{"title":"An Effective Particle Swarm Optimization Algorithm with Social Weight in Solving Economic Dispatch Problem Considering Network Losses","authors":"Jinglei Guo, C. Jin, Wei Liu, W. Zhou","doi":"10.1109/GCIS.2012.83","DOIUrl":null,"url":null,"abstract":"This paper proposes an effective particle swarm optimization algorithm with social weight (ESWPSO) to solve economic dispatch problem in power system. Many nonlinear characteristics of cost function and operational constraints are all considered for practical operation. The extremum disturbance operator in ESWPSO effectively contributes to finding better solutions by generating random points in promising area. The penalty strategy is adopted to help particles satisfy the dynamic power balance constraints. The effectiveness and feasibility of ESWPSO are demonstrated by two power system cases. Compared with previous literature, the experiment results show ESWPSO can fast find higher quality solutions.","PeriodicalId":337629,"journal":{"name":"2012 Third Global Congress on Intelligent Systems","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third Global Congress on Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCIS.2012.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes an effective particle swarm optimization algorithm with social weight (ESWPSO) to solve economic dispatch problem in power system. Many nonlinear characteristics of cost function and operational constraints are all considered for practical operation. The extremum disturbance operator in ESWPSO effectively contributes to finding better solutions by generating random points in promising area. The penalty strategy is adopted to help particles satisfy the dynamic power balance constraints. The effectiveness and feasibility of ESWPSO are demonstrated by two power system cases. Compared with previous literature, the experiment results show ESWPSO can fast find higher quality solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑网络损失的经济调度问题中一种有效的社会权粒子群优化算法
针对电力系统中的经济调度问题,提出了一种有效的社会权重粒子群优化算法。在实际操作中考虑了成本函数的许多非线性特性和操作约束。ESWPSO中的极值扰动算子通过在有希望的区域生成随机点,有效地帮助找到更好的解。采用惩罚策略帮助粒子满足动态功率平衡约束。通过两个电力系统实例验证了该方法的有效性和可行性。与以往文献相比,实验结果表明,ESWPSO可以快速找到更高质量的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Temperature Prediction Based on Different Meteorological Series The Design and Application for a Bio-inspired Nonlinear Intelligent Controller Problem-Specific Knowledge Based Heuristic Algorithm to Solve Satellite Broadcast Scheduling Problem Micro Pitch and Vary Speed for Extreme Value Search MPPT Method of DFIG Academic Relation Classification Rules Extraction with Correlation Feature Weight Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1