Model averaging in predictive regressions

IF 2.9 4区 经济学 Q1 ECONOMICS Econometrics Journal Pub Date : 2016-04-01 DOI:10.1111/ectj.12063
Chu-An Liu, Biing-Shen Kuo
{"title":"Model averaging in predictive regressions","authors":"Chu-An Liu,&nbsp;Biing-Shen Kuo","doi":"10.1111/ectj.12063","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we consider forecast combination in a predictive regression. We construct the point forecast by combining predictions from all possible linear regression models, given a set of potentially relevant predictors. We derive the asymptotic risk of least-squares averaging estimators in a local asymptotic framework. We then develop a frequentist model averaging criterion, an asymptotically unbiased estimator of the asymptotic risk, to select forecast weights. Monte Carlo simulations show that our averaging estimator compares favourably with alternative methods, such as weighted AIC, weighted BIC, Mallows model averaging and jackknife model averaging. The proposed method is applied to stock return predictions.</p></div>","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/ectj.12063","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics Journal","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12063","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 22

Abstract

In this paper, we consider forecast combination in a predictive regression. We construct the point forecast by combining predictions from all possible linear regression models, given a set of potentially relevant predictors. We derive the asymptotic risk of least-squares averaging estimators in a local asymptotic framework. We then develop a frequentist model averaging criterion, an asymptotically unbiased estimator of the asymptotic risk, to select forecast weights. Monte Carlo simulations show that our averaging estimator compares favourably with alternative methods, such as weighted AIC, weighted BIC, Mallows model averaging and jackknife model averaging. The proposed method is applied to stock return predictions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测回归中的模型平均
在本文中,我们考虑预测回归中的预测组合。我们通过结合所有可能的线性回归模型的预测来构建点预测,并给出一组潜在的相关预测因子。我们得到了局部渐近框架下最小二乘平均估计的渐近风险。然后,我们开发了一个频率模型平均准则,即渐近风险的渐近无偏估计量,以选择预测权重。蒙特卡罗模拟表明,我们的平均估计方法优于其他方法,如加权AIC、加权BIC、Mallows模型平均和折刀模型平均。将该方法应用于股票收益预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Econometrics Journal
Econometrics Journal 管理科学-数学跨学科应用
CiteScore
4.20
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Econometrics Journal was established in 1998 by the Royal Economic Society with the aim of creating a top international field journal for the publication of econometric research with a standard of intellectual rigour and academic standing similar to those of the pre-existing top field journals in econometrics. The Econometrics Journal is committed to publishing first-class papers in macro-, micro- and financial econometrics. It is a general journal for econometric research open to all areas of econometrics, whether applied, computational, methodological or theoretical contributions.
期刊最新文献
The Vector Error Correction Index Model: Representation, Estimation and Identification Double Robustness for Complier Parameters and a Semiparametric Test for Complier Characteristics Revealing priors from posteriors with an application to inflation forecasting in the UK Penalized quasi-likelihood estimation and model selection with parameters on the boundary of the parameter space Identifying the elasticity of substitution with biased technical change - a structural panel GMM estimator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1