Multi-objective Advanced Grey Wolf optimization Framework for Smart Charging Scheduling of EVs in Distribution Grids

B. Ahmadi, N. B. Arias, Gerwin Hoogsteen, J. Hurink
{"title":"Multi-objective Advanced Grey Wolf optimization Framework for Smart Charging Scheduling of EVs in Distribution Grids","authors":"B. Ahmadi, N. B. Arias, Gerwin Hoogsteen, J. Hurink","doi":"10.1109/UPEC55022.2022.9917961","DOIUrl":null,"url":null,"abstract":"This paper proposes a multi-objective optimization technique for scheduling the charging of electric vehicles (EVs) in electrical distribution systems (DSs). A multi-objective advanced grey wolf optimization algorithm (MOAGWO) is developed to find the Pareto optimal solutions that minimize the DS’s operational costs, energy losses costs, voltage violations, and the energy not supplied to EV users using several scenarios. A 449-node system with 63% penetration of EVs is used to demonstrate the efficiency of the proposed method. The quality of the non-dominated optimal solutions found by MOAGWO are validated via a comparison analysis with other well-known methods such as the multi-objective grey wolf optimizer (MOGWO) and the multi-objective particle swarm optimization (MOPSO) algorithm, based on domination rate, spacing index, hypervolume index, and computational cost measurements. The Pareto solutions indicate that the smart charging coordination found by MOAGWO makes the techno-economic operation of the DS possible while satisfying energy-based goals of the EV users.","PeriodicalId":371561,"journal":{"name":"2022 57th International Universities Power Engineering Conference (UPEC)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 57th International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC55022.2022.9917961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a multi-objective optimization technique for scheduling the charging of electric vehicles (EVs) in electrical distribution systems (DSs). A multi-objective advanced grey wolf optimization algorithm (MOAGWO) is developed to find the Pareto optimal solutions that minimize the DS’s operational costs, energy losses costs, voltage violations, and the energy not supplied to EV users using several scenarios. A 449-node system with 63% penetration of EVs is used to demonstrate the efficiency of the proposed method. The quality of the non-dominated optimal solutions found by MOAGWO are validated via a comparison analysis with other well-known methods such as the multi-objective grey wolf optimizer (MOGWO) and the multi-objective particle swarm optimization (MOPSO) algorithm, based on domination rate, spacing index, hypervolume index, and computational cost measurements. The Pareto solutions indicate that the smart charging coordination found by MOAGWO makes the techno-economic operation of the DS possible while satisfying energy-based goals of the EV users.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
配电网电动汽车智能充电调度的多目标高级灰狼优化框架
针对配电系统中电动汽车的充电调度问题,提出了一种多目标优化技术。提出了一种多目标高级灰狼优化算法(MOAGWO),在多种情况下,寻找使自动驾驶系统的运行成本、能量损失成本、电压违规和不向电动汽车用户提供能量最小化的帕累托最优解。以电动汽车普及率为63%的449个节点系统为例,验证了该方法的有效性。通过与多目标灰狼优化器(MOGWO)和多目标粒子群优化(MOPSO)算法等其他知名方法的比较分析,验证了MOAGWO找到的非支配最优解的质量,这些方法基于支配率、间隔指数、超大体积指数和计算成本测量。帕累托解表明,MOAGWO找到的智能充电协调方案在满足电动汽车用户能量目标的同时,使DS的技术经济运行成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Evaluation of Extending an Existing Substation Automation System using IEC 61850 Time Characteristic Curve Based Earth Fault Relay Selectivity Assessment for Optimal Overcurrent Relay Coordination in Distribution Networks Impact of the Photovoltaic Array Configuration on its Performance under Partial Shading Conditions The Impacts of The Temperature-Humidity Fluctuations in Substations and Practical Experimental Applications Synthesis and Characterization of Multi-level Pseudo-Random Sequences as Excitation Signals for System Identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1