Big-Data Clustering with Genetic Algorithm

Afsaneh Mortezanezhad, Ebrahim Daneshifar
{"title":"Big-Data Clustering with Genetic Algorithm","authors":"Afsaneh Mortezanezhad, Ebrahim Daneshifar","doi":"10.1109/KBEI.2019.8735076","DOIUrl":null,"url":null,"abstract":"The data emerging from Internet of Things (IoT) usually exhibits a wide variety and is big in terms of quantity, i.e., Big-Data. As a preprocessing step, clustering is a regular task in such systems and normally is done using evolutionary algorithms. In this paper, we propose a new automatic clustering algorithm based on Genetic Algorithm (GA), in which, it is NOT mandatory to know the number of clusters. The proposed algorithm uses a very short chromosome encoding and proposes relevant crossover and mutation operators that lead to a very good clustering performance. Our algorithm, uses an unsupervised learning paradigm to classify the data points into clusters. To demonstrate the performance of the proposed algorithm, it is evaluated with balanced/unbalanced real-world data containing 13-tuple data vectors, and also with a 1.000.000-sample artificially generated random data set. At either cases, our algorithm outperforms the other algorithms.","PeriodicalId":339990,"journal":{"name":"2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI)","volume":"2010 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KBEI.2019.8735076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The data emerging from Internet of Things (IoT) usually exhibits a wide variety and is big in terms of quantity, i.e., Big-Data. As a preprocessing step, clustering is a regular task in such systems and normally is done using evolutionary algorithms. In this paper, we propose a new automatic clustering algorithm based on Genetic Algorithm (GA), in which, it is NOT mandatory to know the number of clusters. The proposed algorithm uses a very short chromosome encoding and proposes relevant crossover and mutation operators that lead to a very good clustering performance. Our algorithm, uses an unsupervised learning paradigm to classify the data points into clusters. To demonstrate the performance of the proposed algorithm, it is evaluated with balanced/unbalanced real-world data containing 13-tuple data vectors, and also with a 1.000.000-sample artificially generated random data set. At either cases, our algorithm outperforms the other algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遗传算法的大数据聚类
物联网(Internet of Things, IoT)产生的数据通常种类繁多,数量庞大,即大数据(big data)。作为预处理步骤,聚类是这类系统中的常规任务,通常使用进化算法完成。本文提出了一种新的基于遗传算法的自动聚类算法,该算法不需要知道聚类的个数。该算法使用了非常短的染色体编码,并提出了相关的交叉和突变算子,从而获得了非常好的聚类性能。我们的算法使用无监督学习范式将数据点分类到簇中。为了证明所提出算法的性能,使用包含13个元组数据向量的平衡/不平衡现实数据以及人工生成的1,000,000个样本随机数据集对其进行了评估。在这两种情况下,我们的算法都优于其他算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Profitability Prediction for ATM Transactions Using Artificial Neural Networks: A Data-Driven Analysis Fabrication of UV detector by Schottky Pd/ZnO/Si Contacts Hybrid of genetic algorithm and krill herd for software clustering problem Development of a Hybrid Bayesian Network Model for Hydraulic Simulation of Agricultural Water Distribution and Delivery Using SIFT Descriptors for Face Recognition Based on Neural Network and Kepenekci Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1