Visually-guided adaptive robot (ViGuAR)

Gennady Livitz, Heather Ames, Ben Chandler, A. Gorchetchnikov, Jasmin Léveillé, Zlatko Vasilkoski, Massimiliano Versace, E. Mingolla, G. Snider, R. Amerson, Dick Carter, H. Abdalla, M. Qureshi
{"title":"Visually-guided adaptive robot (ViGuAR)","authors":"Gennady Livitz, Heather Ames, Ben Chandler, A. Gorchetchnikov, Jasmin Léveillé, Zlatko Vasilkoski, Massimiliano Versace, E. Mingolla, G. Snider, R. Amerson, Dick Carter, H. Abdalla, M. Qureshi","doi":"10.1109/IJCNN.2011.6033608","DOIUrl":null,"url":null,"abstract":"A neural modeling platform known as Cog ex Machina1 (Cog) developed in the context of the DARPA SyNAPSE2 program offers a computational environment that promises, in a foreseeable future, the creation of adaptive whole-brain systems subserving complex behavioral functions in virtual and robotic agents. Cog is designed to operate on low-powered, extremely storage-dense memristive hardware3 that would support massively-parallel, scalable computations. We report an adaptive robotic agent, ViGuAR4, that we developed as a neural model implemented on the Cog platform. The neuromorphic architecture of the ViGuAR brain is designed to support visually-guided navigation and learning, which in combination with the path-planning, memory-driven navigation agent - MoNETA5 - also developed at the Neuromorphics Lab at Boston University, should effectively account for a wide range of key features in rodents' navigational behavior.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A neural modeling platform known as Cog ex Machina1 (Cog) developed in the context of the DARPA SyNAPSE2 program offers a computational environment that promises, in a foreseeable future, the creation of adaptive whole-brain systems subserving complex behavioral functions in virtual and robotic agents. Cog is designed to operate on low-powered, extremely storage-dense memristive hardware3 that would support massively-parallel, scalable computations. We report an adaptive robotic agent, ViGuAR4, that we developed as a neural model implemented on the Cog platform. The neuromorphic architecture of the ViGuAR brain is designed to support visually-guided navigation and learning, which in combination with the path-planning, memory-driven navigation agent - MoNETA5 - also developed at the Neuromorphics Lab at Boston University, should effectively account for a wide range of key features in rodents' navigational behavior.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视觉引导自适应机器人(vigar)
在DARPA SyNAPSE2项目的背景下,一个被称为Cog ex Machina1 (Cog)的神经建模平台提供了一个计算环境,在可预见的未来,可以创建自适应的全脑系统,为虚拟和机器人代理提供复杂的行为功能。Cog被设计在低功耗、存储密度极高的记忆体硬件上运行,这些硬件将支持大规模并行、可扩展的计算。我们报告了一个自适应机器人代理,ViGuAR4,我们开发了一个在Cog平台上实现的神经模型。ViGuAR大脑的神经形态架构旨在支持视觉引导的导航和学习,它与同样由波士顿大学神经形态实验室开发的路径规划、记忆驱动的导航代理(MoNETA5)相结合,应该有效地解释啮齿动物导航行为的广泛关键特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaos of protein folding EEG-based brain dynamics of driving distraction Residential energy system control and management using adaptive dynamic programming How the core theory of CLARION captures human decision-making Wiener systems for reconstruction of missing seismic traces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1