A comparative study of four metaheuristics applied for solving the flow-shop scheduling problem

A. Bouzidi, M. Riffi, M. Barkatou
{"title":"A comparative study of four metaheuristics applied for solving the flow-shop scheduling problem","authors":"A. Bouzidi, M. Riffi, M. Barkatou","doi":"10.1109/WICT.2015.7489661","DOIUrl":null,"url":null,"abstract":"The Flow shop-scheduling problem is NP-hard combinatorial optimization problem, thus, it requires using the computational intelligence to solve it. This paper describes an experimental comparison study of four metaheuristics which are the hybrid genetic algorithm, particle swarm optimization (by and without using local search), and the cat swarm optimization algorithm, in order to analyze their performance in term of solution. The four algorithms has been applied to some benchmark Flow shop problems. The results show that the Cat swarm optimization algorithm is more efficient than other methods to solve the flow shop-scheduling problem.","PeriodicalId":246557,"journal":{"name":"2015 5th World Congress on Information and Communication Technologies (WICT)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 5th World Congress on Information and Communication Technologies (WICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WICT.2015.7489661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Flow shop-scheduling problem is NP-hard combinatorial optimization problem, thus, it requires using the computational intelligence to solve it. This paper describes an experimental comparison study of four metaheuristics which are the hybrid genetic algorithm, particle swarm optimization (by and without using local search), and the cat swarm optimization algorithm, in order to analyze their performance in term of solution. The four algorithms has been applied to some benchmark Flow shop problems. The results show that the Cat swarm optimization algorithm is more efficient than other methods to solve the flow shop-scheduling problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
四种元启发式方法在求解流水车间调度问题中的比较研究
流车间调度问题是NP-hard组合优化问题,需要运用计算智能来求解。本文对混合遗传算法、粒子群算法(使用局部搜索和不使用局部搜索)和猫群算法这四种元启发式算法进行了实验比较研究,以分析它们在求解方面的性能。这四种算法已应用于一些基准流水车间问题。结果表明,Cat群优化算法比其他方法更有效地解决了流水车间调度问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of the credibility of the information shared by a wireless sensor network A regulation model of urban traffic congestion: Algorithm and implementation Interdependencies modeling for the purpose of critical infrastructures protection Toward resilience management in critical information infrastructure A dynamic group privacy protection mechanism based on cloud model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1