HTSCC A Hybrid Task Scheduling Algorithm in Cloud Computing Environment

R. A. Al-Arasi, Anwar Saif
{"title":"HTSCC A Hybrid Task Scheduling Algorithm in Cloud Computing Environment","authors":"R. A. Al-Arasi, Anwar Saif","doi":"10.24297/IJCT.V17I2.7584","DOIUrl":null,"url":null,"abstract":"Nowadays, cloud computing makes it possible for users to use the computing resources like application, software, and hardware, etc., on pay as use model via the internet. One of the core and challenging issue in cloud computing is the task scheduling. Task scheduling problem is an NP-hard problem and is responsible for mapping the tasks to resources in a way to spread the load evenly. The appropriate mapping between resources and tasks reduces makespan and maximizes resource utilization. In this paper, we present and implement an independent task scheduling algorithm that assigns the users' tasks to multiple computing resources. The proposed algorithm is a hybrid algorithm for task scheduling in cloud computing based on a genetic algorithm (GA) and particle swarm optimization (PSO). The algorithm is implemented and simulated using CloudSim simulator. The simulation results show that our proposed algorithm outperforms the GA and PSO algorithms by decreasing the makespan and increasing the resource utilization.","PeriodicalId":161820,"journal":{"name":"INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24297/IJCT.V17I2.7584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Nowadays, cloud computing makes it possible for users to use the computing resources like application, software, and hardware, etc., on pay as use model via the internet. One of the core and challenging issue in cloud computing is the task scheduling. Task scheduling problem is an NP-hard problem and is responsible for mapping the tasks to resources in a way to spread the load evenly. The appropriate mapping between resources and tasks reduces makespan and maximizes resource utilization. In this paper, we present and implement an independent task scheduling algorithm that assigns the users' tasks to multiple computing resources. The proposed algorithm is a hybrid algorithm for task scheduling in cloud computing based on a genetic algorithm (GA) and particle swarm optimization (PSO). The algorithm is implemented and simulated using CloudSim simulator. The simulation results show that our proposed algorithm outperforms the GA and PSO algorithms by decreasing the makespan and increasing the resource utilization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HTSCC:云计算环境下的混合任务调度算法
如今,云计算使用户能够通过互联网以付费模式使用应用程序、软件和硬件等计算资源。任务调度是云计算的核心问题之一。任务调度问题是一个np困难问题,它负责将任务映射到资源,以平均分配负载。资源和任务之间的适当映射减少了完工时间并最大化了资源利用率。本文提出并实现了一种独立的任务调度算法,该算法将用户的任务分配给多个计算资源。该算法是一种基于遗传算法(GA)和粒子群优化(PSO)的混合云计算任务调度算法。利用CloudSim模拟器对该算法进行了实现和仿真。仿真结果表明,本文提出的算法在减小最大时间跨度和提高资源利用率方面优于遗传算法和粒子群算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blockwise Analysis of Health Indicators of Gadchiroli District using Composite Index: An application of GKG Algorithm Home Automation Using Packet Tracer and ESP8266 An Economic Model of Machine Translation Digital Business Model Innovation: Empirical insights into the drivers and value of Artificial Intelligence An Empirical Model For Validity And Verification Of Ai Behavior: Overcoming Ai Hazards In Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1