Scientific Workflows at DataWarp-Speed: Accelerated Data-Intensive Science Using NERSC's Burst Buffer

A. Ovsyannikov, Melissa Romanus, B. V. Straalen, G. Weber, D. Trebotich
{"title":"Scientific Workflows at DataWarp-Speed: Accelerated Data-Intensive Science Using NERSC's Burst Buffer","authors":"A. Ovsyannikov, Melissa Romanus, B. V. Straalen, G. Weber, D. Trebotich","doi":"10.1109/PDSW-DISCS.2016.5","DOIUrl":null,"url":null,"abstract":"Emerging exascale systems have the ability to accelerate the time-to-discovery for scientific workflows. However, as these workflows become more complex, their generated data has grown at an unprecedented rate, making I/O constraints challenging. To address this problem advanced memory hierarchies, such as burst buffers, have been proposed as intermediate layers between the compute nodes and the parallel file system. In this paper, we utilize Cray DataWarp burst buffer coupled with in-transit processing mechanisms, to demonstrate the advantages of advanced memory hierarchies in preserving traditional coupled scientific workflows. We consider in-transit workflow which couples simulation of subsurface flows with on-the-fly flow visualization. With respect to the proposed workflow, we study the performance of the Cray DataWarp Burst Buffer and provide a comparison with the Lustre parallel file system.","PeriodicalId":375550,"journal":{"name":"2016 1st Joint International Workshop on Parallel Data Storage and data Intensive Scalable Computing Systems (PDSW-DISCS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 1st Joint International Workshop on Parallel Data Storage and data Intensive Scalable Computing Systems (PDSW-DISCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDSW-DISCS.2016.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Emerging exascale systems have the ability to accelerate the time-to-discovery for scientific workflows. However, as these workflows become more complex, their generated data has grown at an unprecedented rate, making I/O constraints challenging. To address this problem advanced memory hierarchies, such as burst buffers, have been proposed as intermediate layers between the compute nodes and the parallel file system. In this paper, we utilize Cray DataWarp burst buffer coupled with in-transit processing mechanisms, to demonstrate the advantages of advanced memory hierarchies in preserving traditional coupled scientific workflows. We consider in-transit workflow which couples simulation of subsurface flows with on-the-fly flow visualization. With respect to the proposed workflow, we study the performance of the Cray DataWarp Burst Buffer and provide a comparison with the Lustre parallel file system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DataWarp-Speed的科学工作流程:使用NERSC的突发缓冲区加速数据密集型科学
新兴的百亿亿级系统能够加快科学工作流程的发现时间。然而,随着这些工作流变得越来越复杂,它们生成的数据以前所未有的速度增长,使得I/O限制变得具有挑战性。为了解决这个问题,已经提出了高级内存层次结构,如突发缓冲区,作为计算节点和并行文件系统之间的中间层。在本文中,我们利用Cray DataWarp突发缓冲区与传输中的处理机制相结合,来展示先进的内存层次结构在保留传统耦合科学工作流方面的优势。我们考虑将地下流动模拟与动态流动可视化相结合的运输工作流。针对所提出的工作流,我们研究了Cray DataWarp Burst Buffer的性能,并与Lustre并行文件系统进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Klimatic: A Virtual Data Lake for Harvesting and Distribution of Geospatial Data Towards Energy Efficient Data Management in HPC: The Open Ethernet Drive Approach FatMan vs. LittleBoy: Scaling Up Linear Algebraic Operations in Scale-Out Data Platforms A Bloom Filter Based Scalable Data Integrity Check Tool for Large-Scale Dataset Can Non-volatile Memory Benefit MapReduce Applications on HPC Clusters?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1