{"title":"Looking Beyond Genres: Identifying Meaningful Semantic Layers from Tags in Online Music Collections","authors":"R. Ferrer, T. Eerola","doi":"10.1109/ICMLA.2011.89","DOIUrl":null,"url":null,"abstract":"A scheme for identifying the semantic layers of music-related tags is presented. Arguments are provided why the applications of the tags cannot be effectively pursued without a reasonable understanding of their semantic qualities. The identification scheme consists of a set of filters. The first is related with social consensus, user-count ratio, and n-gram properties of tags. The next relies on look-up functions across multiple databases to determine the probable semantic layer of each tag. Examples of the semantic layers with prevalence rates are given based on application of the scheme to a subset of the Million Song Dataset. Finally, a validation of the results was carried out with an independent, smaller hand-annotated dataset, in which high agreement between the identification provided by the scheme and annotations was found.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A scheme for identifying the semantic layers of music-related tags is presented. Arguments are provided why the applications of the tags cannot be effectively pursued without a reasonable understanding of their semantic qualities. The identification scheme consists of a set of filters. The first is related with social consensus, user-count ratio, and n-gram properties of tags. The next relies on look-up functions across multiple databases to determine the probable semantic layer of each tag. Examples of the semantic layers with prevalence rates are given based on application of the scheme to a subset of the Million Song Dataset. Finally, a validation of the results was carried out with an independent, smaller hand-annotated dataset, in which high agreement between the identification provided by the scheme and annotations was found.