Fuzzy Belief Reasoning for Intrusion Detection Design

T. Chou, K. Yen, N. Pissinou, K. Makki
{"title":"Fuzzy Belief Reasoning for Intrusion Detection Design","authors":"T. Chou, K. Yen, N. Pissinou, K. Makki","doi":"10.1109/IIH-MSP.2007.416","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method to resolve uncertainty problems by incorporating fuzzy clustering technique and Dempster-Shafer theory. Also, the k-nearest neighbors (k-NN) technique is applied to speed up the detection process and C4.5 decision tree algorithm is used to improve the classification accuracy. For verifying the performance of our classifier, DARPA KDD99 intrusion detection evaluation data set is used. We compare the results of our proposed approach with those of k-NN classifier, fuzzy k-NN classifier and evidence-theoretic k-NN classifier. The result indicates that our approach has a better performance than these from the other three classifiers.","PeriodicalId":385132,"journal":{"name":"Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP 2007)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIH-MSP.2007.416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we propose a method to resolve uncertainty problems by incorporating fuzzy clustering technique and Dempster-Shafer theory. Also, the k-nearest neighbors (k-NN) technique is applied to speed up the detection process and C4.5 decision tree algorithm is used to improve the classification accuracy. For verifying the performance of our classifier, DARPA KDD99 intrusion detection evaluation data set is used. We compare the results of our proposed approach with those of k-NN classifier, fuzzy k-NN classifier and evidence-theoretic k-NN classifier. The result indicates that our approach has a better performance than these from the other three classifiers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
入侵检测设计中的模糊信念推理
本文提出了一种结合模糊聚类技术和Dempster-Shafer理论来解决不确定性问题的方法。采用k近邻(k-NN)技术加快检测过程,采用C4.5决策树算法提高分类精度。为了验证分类器的性能,使用了DARPA KDD99入侵检测评估数据集。我们将该方法与k-NN分类器、模糊k-NN分类器和证据理论k-NN分类器的结果进行了比较。结果表明,我们的方法比其他三种分类器具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image Retrieval with Long-Term Memory Learning and Short-Time Relevance Feedback Psychoacoustically-Adapted Patchwork Algorithm for Watermarking A Resistor String DAC for Video Processing Crytanalysis and Improvement on Chang et al.'s Signature Scheme A Multi-path Routing Protocol with Reduced Control Messages for Wireless Sensor Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1