Multi-modal non-rigid registration of medical images based on mutual information maximization

E. Ardizzone, O. Gambino, M. Cascia, Liliana Lo Presti, R. Pirrone
{"title":"Multi-modal non-rigid registration of medical images based on mutual information maximization","authors":"E. Ardizzone, O. Gambino, M. Cascia, Liliana Lo Presti, R. Pirrone","doi":"10.1109/ICIAP.2007.90","DOIUrl":null,"url":null,"abstract":"In this paper, a new multi-modal non-rigid registration technique for medical images is presented. Firstly, the registration problem is outlined and some of the most common approaches reported, then, the proposed algorithm is presented. The proposed technique is based on mutual information maximization and computes a deformation field through a suitable globally smoothed affine piecewise transformation. The algorithm has been conceived with particular attention to computational load and accuracy of results. Experimental results involving intra-patient, inter-patients and atlas images on brain CT and MR (T1, T2 and PD modalities) are reported.","PeriodicalId":118466,"journal":{"name":"14th International Conference on Image Analysis and Processing (ICIAP 2007)","volume":"18 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th International Conference on Image Analysis and Processing (ICIAP 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2007.90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

In this paper, a new multi-modal non-rigid registration technique for medical images is presented. Firstly, the registration problem is outlined and some of the most common approaches reported, then, the proposed algorithm is presented. The proposed technique is based on mutual information maximization and computes a deformation field through a suitable globally smoothed affine piecewise transformation. The algorithm has been conceived with particular attention to computational load and accuracy of results. Experimental results involving intra-patient, inter-patients and atlas images on brain CT and MR (T1, T2 and PD modalities) are reported.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于互信息最大化的医学图像多模态非刚性配准
提出了一种新的医学图像多模态非刚性配准技术。首先概述了配准问题,介绍了几种常用的配准方法,然后给出了该算法。该方法基于互信息最大化,通过适当的全局光滑仿射分段变换计算变形场。该算法在构思时特别注意计算量和结果的准确性。本文报道了脑CT和MR (T1、T2和PD模式)的患者内、患者间和脑图谱图像的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-time Gesture Recognition in Advanced Videocommunication Services Corner Displacement from Motion Blur A Method of Clustering Combination Applied to Satellite Image Analysis Sight enhancement through video fusion in a surveillance system Robust Iris Localization and Tracking based on Constrained Visual Fitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1