Biological immune system by evolutionary adaptive learning of neural networks

S. Oeda, T. Icmmura, T. Yamashita
{"title":"Biological immune system by evolutionary adaptive learning of neural networks","authors":"S. Oeda, T. Icmmura, T. Yamashita","doi":"10.1109/CEC.2002.1004546","DOIUrl":null,"url":null,"abstract":"Artificial immune systems have been identified as artificially intelligent systems. Some algorithms have been developed on this antigen-antibody response. Here, a model is presented wherein the behavior of each immune cell is specified. We improve this model using knowledge of the major histocompatibility complex. For this purpose an evolutionary neural network was used. Qualitative analysis of the results offers verification of the effectiveness of this approach to simulating an immune system.","PeriodicalId":184547,"journal":{"name":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2002.1004546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Artificial immune systems have been identified as artificially intelligent systems. Some algorithms have been developed on this antigen-antibody response. Here, a model is presented wherein the behavior of each immune cell is specified. We improve this model using knowledge of the major histocompatibility complex. For this purpose an evolutionary neural network was used. Qualitative analysis of the results offers verification of the effectiveness of this approach to simulating an immune system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物免疫系统的进化适应学习神经网络
人工免疫系统是一种人工智能系统。针对这种抗原-抗体反应已经开发了一些算法。这里,提出了一个模型,其中每个免疫细胞的行为是指定的。我们利用主要组织相容性复合体的知识来改进这个模型。为此,使用了进化神经网络。对结果进行定性分析,验证了这种方法模拟免疫系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of FPGA based adaptive image enhancement filter system using genetic algorithms Intelligent predictive control of a power plant with evolutionary programming optimizer and neuro-fuzzy identifier Blocked stochastic sampling versus Estimation of Distribution Algorithms Distinguishing adaptive from non-adaptive evolution using Ashby's law of requisite variety An artificial immune network for multimodal function optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1