Vehicle dynamics and road geometry estimation using a Takagi-Sugeno fuzzy observer with unknown inputs

H. Dahmani, M. Chadli, A. Rabhi, A. Hajjaji
{"title":"Vehicle dynamics and road geometry estimation using a Takagi-Sugeno fuzzy observer with unknown inputs","authors":"H. Dahmani, M. Chadli, A. Rabhi, A. Hajjaji","doi":"10.1109/IVS.2011.5940491","DOIUrl":null,"url":null,"abstract":"This paper describes a methodology for estimating both vehicle dynamics and road geometry using a Fuzzy unknown input observer. Vehicle sideslip and roll parameters are estimated in presence of the road bank angle and the road curvature as unknown inputs. The unknown inputs are then estimated using the observer results. The used nonlinear model deduced from the vehicle lateral and roll dynamics with a vision system is represented by a Takagi-Sugeno (TS) fuzzy model in order to take into account the nonlinearities of the cornering forces. Taking into account the unmeasured variables, an unknown inputs (TS) observer is then designed on the basis of the measure of the roll rate, the steering angle and the lateral offset given by the distance between the road centerline and the vehicle axe at a look-ahead distance. Synthesis conditions of the proposed fuzzy observer are formulated in terms of Linear Matrix Inequalities (LMI) using Lyapunov method. Simulation results show good efficiency of the proposed method to estimate both vehicle dynamics and road geometry.","PeriodicalId":117811,"journal":{"name":"2011 IEEE Intelligent Vehicles Symposium (IV)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2011.5940491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper describes a methodology for estimating both vehicle dynamics and road geometry using a Fuzzy unknown input observer. Vehicle sideslip and roll parameters are estimated in presence of the road bank angle and the road curvature as unknown inputs. The unknown inputs are then estimated using the observer results. The used nonlinear model deduced from the vehicle lateral and roll dynamics with a vision system is represented by a Takagi-Sugeno (TS) fuzzy model in order to take into account the nonlinearities of the cornering forces. Taking into account the unmeasured variables, an unknown inputs (TS) observer is then designed on the basis of the measure of the roll rate, the steering angle and the lateral offset given by the distance between the road centerline and the vehicle axe at a look-ahead distance. Synthesis conditions of the proposed fuzzy observer are formulated in terms of Linear Matrix Inequalities (LMI) using Lyapunov method. Simulation results show good efficiency of the proposed method to estimate both vehicle dynamics and road geometry.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于未知输入的Takagi-Sugeno模糊观测器的车辆动力学和道路几何估计
本文描述了一种利用模糊未知输入观测器估计车辆动力学和道路几何形状的方法。在道路倾斜角度和道路曲率作为未知输入的情况下,估计车辆侧滑和侧倾参数。然后使用观测器结果估计未知输入。利用视觉系统从车辆侧倾和侧倾动力学推导出的非线性模型,考虑到转弯力的非线性,采用Takagi-Sugeno (TS)模糊模型表示。考虑到未测量的变量,然后设计一个未知输入(TS)观测器,该观测器基于前视距离下道路中心线与车辆轴之间的距离给出的侧倾率、转向角度和侧向偏移量的测量。利用李雅普诺夫方法用线性矩阵不等式(LMI)表示了所提出的模糊观测器的综合条件。仿真结果表明,该方法在估计车辆动力学和道路几何两方面都具有良好的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent headlight control using learning-based approaches Piecewise affine state feedback controller for lane departure avoidance U-V-Disparity based Obstacle Detection with 3D Camera and steerable filter Invariant set based vehicle handling improvement at tire saturation using fuzzy output feedback Lane change intent prediction for driver assistance: On-road design and evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1