Visualization and visual analysis of multimedia data in manufacturing: A survey

IF 3.8 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Visual Informatics Pub Date : 2022-12-01 DOI:10.1016/j.visinf.2022.09.001
Yunchao Wang, Zihao Zhu, Lei Wang, Guodao Sun, Ronghua Liang
{"title":"Visualization and visual analysis of multimedia data in manufacturing: A survey","authors":"Yunchao Wang,&nbsp;Zihao Zhu,&nbsp;Lei Wang,&nbsp;Guodao Sun,&nbsp;Ronghua Liang","doi":"10.1016/j.visinf.2022.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>With the development of production technology and social needs, sectors of manufacturing are constantly improving. The use of sensors and computers has made it increasingly convenient to collect multimedia data in manufacturing. Targeted, rapid, and detailed analysis based on the type of multimedia data can make timely decisions at different stages of the entire manufacturing process. Visualization and visual analytics are frequently adopted in multimedia data analysis of manufacturing because of their powerful ability to understand, present, and analyze data intuitively and interactively. In this paper, we present a literature review of visualization and visual analytics specifically for manufacturing multimedia data. We classify existing research according to visualization techniques, interaction analysis methods, and application areas. We discuss the differences when visualization and visual analytics are applied to different types of multimedia data in the context of particular examples of manufacturing research projects. Finally, we summarize the existing challenges and prospective research directions.</p></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"6 4","pages":"Pages 12-21"},"PeriodicalIF":3.8000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468502X22000912/pdfft?md5=7a4420f6c48211e2a2b1aa7571c6e640&pid=1-s2.0-S2468502X22000912-main.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X22000912","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 4

Abstract

With the development of production technology and social needs, sectors of manufacturing are constantly improving. The use of sensors and computers has made it increasingly convenient to collect multimedia data in manufacturing. Targeted, rapid, and detailed analysis based on the type of multimedia data can make timely decisions at different stages of the entire manufacturing process. Visualization and visual analytics are frequently adopted in multimedia data analysis of manufacturing because of their powerful ability to understand, present, and analyze data intuitively and interactively. In this paper, we present a literature review of visualization and visual analytics specifically for manufacturing multimedia data. We classify existing research according to visualization techniques, interaction analysis methods, and application areas. We discuss the differences when visualization and visual analytics are applied to different types of multimedia data in the context of particular examples of manufacturing research projects. Finally, we summarize the existing challenges and prospective research directions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
制造业中多媒体数据的可视化与可视化分析:综述
随着生产技术的发展和社会的需求,制造业的各个环节也在不断完善。传感器和计算机的使用使得在制造业中收集多媒体数据变得越来越方便。基于多媒体数据类型的有针对性、快速、详细的分析,可以在整个制造过程的不同阶段做出及时的决策。由于可视化和可视化分析具有直观、交互地理解、呈现和分析数据的强大能力,因此在制造业的多媒体数据分析中经常采用可视化和可视化分析。在本文中,我们提出了可视化和可视化分析的文献综述,特别是制造多媒体数据。我们根据可视化技术、交互分析方法和应用领域对现有研究进行分类。我们讨论了当可视化和可视化分析应用于不同类型的多媒体数据时,在制造研究项目的特定示例的背景下的差异。最后,总结了存在的挑战和未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Visual Informatics
Visual Informatics Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.70
自引率
3.30%
发文量
33
审稿时长
79 days
期刊最新文献
Intelligent CAD 2.0 Editorial Board RelicCARD: Enhancing cultural relics exploration through semantics-based augmented reality tangible interaction design JobViz: Skill-driven visual exploration of job advertisements Visual evaluation of graph representation learning based on the presentation of community structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1