G. Bru, Juan J. Portela, P. Ezquerro, M. Navarro, A. Staller, M. Béjar-Pizarro, C. Guardiola‐Albert, J. Fernández-Merodo, J. López-Vinielles, R. Tomás, J. Lopez-Sanchez
{"title":"Imaging land subsidence in the Guadalentín River Basin (SE Spain) using Advanced Differential SAR Interferometry","authors":"G. Bru, Juan J. Portela, P. Ezquerro, M. Navarro, A. Staller, M. Béjar-Pizarro, C. Guardiola‐Albert, J. Fernández-Merodo, J. López-Vinielles, R. Tomás, J. Lopez-Sanchez","doi":"10.4995/jisdm2022.2022.13826","DOIUrl":null,"url":null,"abstract":"Aquifer overexploitation can lead to the irreversible loss of groundwater storage caused by the compaction or consolidation of unconsolidated fine-grained sediments resulting in land subsidence. Advanced Differential SAR Interferometry (A-DINSAR) is particularly efficient to monitor progressive ground movements, making it an appropriate method to study depleting aquifers undergoing overexploitation and land subsidence. The Guadalentín River Basin (Murcia, Spain) is a widely recognized subsiding area that exhibits the highest rates of groundwater-related land subsidence recorded in Europe (>10 cm/yr). The basin covers an extension of more than 500 km2 and is underlain by an overexploited aquifer-system formed by two contiguous hydraulically connected units (Alto Guadalentín and Bajo Guadalentín). Although during the last years the piezometric levels have partially stabilized, the ongoing aquifer-system deformation is evident and significant, as revealed by the A-DInSAR analysis presented. In this work, we submit the first vertical and horizontal (E-W) decomposition results of the LOS velocity and displacement time series of the whole Guadalentín Basin obtained from two datasets of Sentinel-1 SAR acquisitions in ascending and descending modes. The images cover the period from 2015 to 2021 and they were processed using the Parallel Small BAseline Subset (P-SBAS) implemented by CNR-IREA in the Geohazards Exploitation Platform (GEP) on-demand web tool, which is funded by the European Space Agency. The output ascending and descending measurement points of P-SBAS lie on the same regular grid, which is particularly suited for the geometrical decomposition. Time series displacements are compared to a permanent GNSS station located in the Bajo Guadalentín basin.","PeriodicalId":404487,"journal":{"name":"Proceedings of the 5th Joint International Symposium on Deformation Monitoring - JISDM 2022","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Joint International Symposium on Deformation Monitoring - JISDM 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/jisdm2022.2022.13826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aquifer overexploitation can lead to the irreversible loss of groundwater storage caused by the compaction or consolidation of unconsolidated fine-grained sediments resulting in land subsidence. Advanced Differential SAR Interferometry (A-DINSAR) is particularly efficient to monitor progressive ground movements, making it an appropriate method to study depleting aquifers undergoing overexploitation and land subsidence. The Guadalentín River Basin (Murcia, Spain) is a widely recognized subsiding area that exhibits the highest rates of groundwater-related land subsidence recorded in Europe (>10 cm/yr). The basin covers an extension of more than 500 km2 and is underlain by an overexploited aquifer-system formed by two contiguous hydraulically connected units (Alto Guadalentín and Bajo Guadalentín). Although during the last years the piezometric levels have partially stabilized, the ongoing aquifer-system deformation is evident and significant, as revealed by the A-DInSAR analysis presented. In this work, we submit the first vertical and horizontal (E-W) decomposition results of the LOS velocity and displacement time series of the whole Guadalentín Basin obtained from two datasets of Sentinel-1 SAR acquisitions in ascending and descending modes. The images cover the period from 2015 to 2021 and they were processed using the Parallel Small BAseline Subset (P-SBAS) implemented by CNR-IREA in the Geohazards Exploitation Platform (GEP) on-demand web tool, which is funded by the European Space Agency. The output ascending and descending measurement points of P-SBAS lie on the same regular grid, which is particularly suited for the geometrical decomposition. Time series displacements are compared to a permanent GNSS station located in the Bajo Guadalentín basin.