Slice Resource Allocation Technology of Cognitive Wireless Network Based on NOMA

Yong Zhang, Siyu Yuan, Lizi Hu, W. Qie, Da Guo
{"title":"Slice Resource Allocation Technology of Cognitive Wireless Network Based on NOMA","authors":"Yong Zhang, Siyu Yuan, Lizi Hu, W. Qie, Da Guo","doi":"10.1109/ICECE54449.2021.9674344","DOIUrl":null,"url":null,"abstract":"With the integration of industrialization and informatization, the contradiction between radio supply and demand has become increasingly prominent. To improve the utilization of spectrum resources, it is necessary to use cognitive radio technology and NOMA (NON Othogonal Multiple Access) technology. In this paper, we propose a multi-agent reinforcement learning algorithm by combining graph convolutional neural network and DQN (Deep Q Network) algorithm, which is suitable for cognitive NOMA network slice resource allocation scenario. Simulation results show that the algorithm can improve the convergence value and convergence speed.","PeriodicalId":166178,"journal":{"name":"2021 IEEE 4th International Conference on Electronics and Communication Engineering (ICECE)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 4th International Conference on Electronics and Communication Engineering (ICECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECE54449.2021.9674344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the integration of industrialization and informatization, the contradiction between radio supply and demand has become increasingly prominent. To improve the utilization of spectrum resources, it is necessary to use cognitive radio technology and NOMA (NON Othogonal Multiple Access) technology. In this paper, we propose a multi-agent reinforcement learning algorithm by combining graph convolutional neural network and DQN (Deep Q Network) algorithm, which is suitable for cognitive NOMA network slice resource allocation scenario. Simulation results show that the algorithm can improve the convergence value and convergence speed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于NOMA的认知无线网络切片资源分配技术
随着工业化和信息化的融合,无线电供需矛盾日益突出。为了提高频谱资源的利用率,有必要采用认知无线电技术和NOMA (NON Othogonal Multiple Access)技术。本文提出了一种将图卷积神经网络与DQN (Deep Q network)算法相结合的多智能体强化学习算法,该算法适用于认知NOMA网络片资源分配场景。仿真结果表明,该算法可以提高收敛值和收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of Emergency Rescue Command Platform Based on Satellite Mobile Communication System Multi-Dimensional Spectrum Data Denoising Based on Tensor Theory Predicting COVID-19 Severe Patients and Evaluation Method of 3 Stages Severe Level by Machine Learning A Novel Stacking Framework Based On Hybrid of Gradient Boosting-Adaptive Boosting-Multilayer Perceptron for Crash Injury Severity Prediction and Analysis Key Techniques on Unified Identity Authentication in OpenMBEE Integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1