CloudSocket: Smart grid platform for datacenters

Seil Lee, Hanjoo Kim, Seongsik Park, Seijoon Kim, Hyeokjun Choe, Chang-Sung Jeong, Sungroh Yoon
{"title":"CloudSocket: Smart grid platform for datacenters","authors":"Seil Lee, Hanjoo Kim, Seongsik Park, Seijoon Kim, Hyeokjun Choe, Chang-Sung Jeong, Sungroh Yoon","doi":"10.1109/ICCD.2016.7753322","DOIUrl":null,"url":null,"abstract":"Today's datacenters are equipped with diverse computing and storage devices for handling a myriad of data and normally consume a significant amount of electrical energy. This paper proposes a smart grid inspired methodology to monitor and profile the energy consumption of a datacenter, with the aim of providing information useful for reducing the peak power consumption of the datacenter. Our energy measurement platform is named CloudSocket, and each CloudSocket unit can measure the power consumption of an individual computing node and periodically transmit the measurement information wirelessly to the coordinator unit that can manage many Cloud-Sockets simultaneously. We tested our methodology with a 32-node grid system that runs Apache Spark for large-scale data analytics. Analyzing our experimental results reveals how and where the peak power of each node in the grid overlaps, providing opportunities for informative coordination of the computing components for overall power reduction.","PeriodicalId":297899,"journal":{"name":"2016 IEEE 34th International Conference on Computer Design (ICCD)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 34th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2016.7753322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Today's datacenters are equipped with diverse computing and storage devices for handling a myriad of data and normally consume a significant amount of electrical energy. This paper proposes a smart grid inspired methodology to monitor and profile the energy consumption of a datacenter, with the aim of providing information useful for reducing the peak power consumption of the datacenter. Our energy measurement platform is named CloudSocket, and each CloudSocket unit can measure the power consumption of an individual computing node and periodically transmit the measurement information wirelessly to the coordinator unit that can manage many Cloud-Sockets simultaneously. We tested our methodology with a 32-node grid system that runs Apache Spark for large-scale data analytics. Analyzing our experimental results reveals how and where the peak power of each node in the grid overlaps, providing opportunities for informative coordination of the computing components for overall power reduction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CloudSocket:数据中心的智能电网平台
今天的数据中心配备了各种计算和存储设备来处理无数的数据,并且通常消耗大量的电能。本文提出了一种受智能电网启发的方法来监测和描述数据中心的能源消耗,目的是提供有助于降低数据中心峰值功耗的信息。我们的能量测量平台名为CloudSocket,每个CloudSocket单元可以测量单个计算节点的功耗,并定期将测量信息无线传输到可以同时管理多个cloud - socket的协调单元。我们用一个32节点的网格系统测试了我们的方法,该系统运行Apache Spark进行大规模数据分析。分析我们的实验结果揭示了网格中每个节点的峰值功率重叠的方式和位置,为计算组件的信息协调提供了机会,以降低总体功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CNN-MERP: An FPGA-based memory-efficient reconfigurable processor for forward and backward propagation of convolutional neural networks VARIUS-TC: A modular architecture-level model of parametric variation for thin-channel switches A readback based general debugging framework for soft-core processors How logic masking can improve path delay analysis for Hardware Trojan detection ONAC: Optimal number of active cores detector for energy efficient GPU computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1