Canny edge detection towards deep learning Arabic document classification

Taghreed Alghamdi, S. Snoussi, L. Hsairi
{"title":"Canny edge detection towards deep learning Arabic document classification","authors":"Taghreed Alghamdi, S. Snoussi, L. Hsairi","doi":"10.1145/3440749.3442641","DOIUrl":null,"url":null,"abstract":"The paper describes the implementation of deep learning-based edge detection in image processing. A set of points in an image at which image brightness changes formally or sharply is called edge detection. Using edge detection filters, we can extract the feature of an object. In our work, we aim to develop a deep learning system to classify Arabic document images into four classes as follows: printed, handwritten, historical, and signboard and applying edge detection filters to extract features from document images. We will be using two edge detection methods namely Sobel, and Canny edge detection that are applied in 1000 Arabic document images to extract edges. Analyzing the performance factors are done in the terms of accuracy on the premise of Mean Squared Error (MSE) and python is employed for edge detection implementation. The experimental results show that the Canny edge detection technique results higher than the Sobel edge detection technique.","PeriodicalId":344578,"journal":{"name":"Proceedings of the 4th International Conference on Future Networks and Distributed Systems","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Future Networks and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3440749.3442641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper describes the implementation of deep learning-based edge detection in image processing. A set of points in an image at which image brightness changes formally or sharply is called edge detection. Using edge detection filters, we can extract the feature of an object. In our work, we aim to develop a deep learning system to classify Arabic document images into four classes as follows: printed, handwritten, historical, and signboard and applying edge detection filters to extract features from document images. We will be using two edge detection methods namely Sobel, and Canny edge detection that are applied in 1000 Arabic document images to extract edges. Analyzing the performance factors are done in the terms of accuracy on the premise of Mean Squared Error (MSE) and python is employed for edge detection implementation. The experimental results show that the Canny edge detection technique results higher than the Sobel edge detection technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向深度学习阿拉伯语文档分类的精细边缘检测
本文描述了基于深度学习的边缘检测在图像处理中的实现。图像中图像亮度发生正式或剧烈变化的一组点称为边缘检测。利用边缘检测滤波器,我们可以提取目标的特征。在我们的工作中,我们的目标是开发一个深度学习系统,将阿拉伯语文档图像分为以下四类:印刷,手写,历史和招牌,并应用边缘检测滤波器从文档图像中提取特征。我们将使用两种边缘检测方法,即Sobel和Canny边缘检测,这两种方法应用于1000个阿拉伯文档图像中提取边缘。在均方误差(Mean Squared Error, MSE)的前提下,从精度角度分析了性能因素,并采用python实现边缘检测。实验结果表明,Canny边缘检测技术的检测效果优于Sobel边缘检测技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lifetime Enhancement of WSN Based on Improved LEACH with Cluster Head Alternative Gateway Multiple Level Action Embedding for Penetration Testing Polygons characterizing the joint statistical properties of the input and output sequences of the binary shift register Methodology for testing LPWAN networks with mesh topology Applying Multidimensional Scaling Method to Determine Spatial Coordinates of WSN Nodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1