Identifying the Motives of Using Weibo from Digital Traces

Bi Li, Boyu Chen, Yan Wu, Juan Wang, Xueming Yan, Yahui Yang
{"title":"Identifying the Motives of Using Weibo from Digital Traces","authors":"Bi Li, Boyu Chen, Yan Wu, Juan Wang, Xueming Yan, Yahui Yang","doi":"10.1145/3443279.3443294","DOIUrl":null,"url":null,"abstract":"Billions of users around the world are using social networking sites (SNS) to express everyday thoughts and feelings. Investigating motives of using SNS is attracting scholarly attention. The common way to assess users' motives is analyzing data from self-report questionnaires. The current research aims to identifying undergraduate students' motives of using Weibo from digital traces, in an effort to alleviate the distortion in self-report data. The term frequency-inverse document frequency (Tf-idf) was employed to obtain key terms and their weights in digital traces crawled from Weibo. Top frequent terms, based on Tf-idf, indicate that entertainment, information seeking and sharing, and alleviating life stress are among the major motives of using Weibo. This study underscores the feasibility and importance of directly detecting motives of using SNS from digital traces.","PeriodicalId":414366,"journal":{"name":"Proceedings of the 4th International Conference on Natural Language Processing and Information Retrieval","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Natural Language Processing and Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3443279.3443294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Billions of users around the world are using social networking sites (SNS) to express everyday thoughts and feelings. Investigating motives of using SNS is attracting scholarly attention. The common way to assess users' motives is analyzing data from self-report questionnaires. The current research aims to identifying undergraduate students' motives of using Weibo from digital traces, in an effort to alleviate the distortion in self-report data. The term frequency-inverse document frequency (Tf-idf) was employed to obtain key terms and their weights in digital traces crawled from Weibo. Top frequent terms, based on Tf-idf, indicate that entertainment, information seeking and sharing, and alleviating life stress are among the major motives of using Weibo. This study underscores the feasibility and importance of directly detecting motives of using SNS from digital traces.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从数字痕迹看微博使用动机
全球数十亿用户使用社交网站(SNS)来表达日常的想法和感受。研究社交网络的使用动机正引起学术界的关注。评估用户动机的常用方法是分析自我报告问卷的数据。本研究旨在从数字痕迹中识别大学生使用微博的动机,以缓解自我报告数据的失真。采用词频逆文档频率(Tf-idf)获取微博数字轨迹中的关键词及其权重。基于Tf-idf的高频词显示,娱乐、信息寻求和分享以及缓解生活压力是使用微博的主要动机。本研究强调了从数字痕迹中直接检测使用SNS动机的可行性和重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ranking Hotel Reviews Based on User's Aspects Importance and Opinions Research on Information Extraction of Municipal Solid Waste Crisis using BERT-LSTM-CRF A Classification on Different Aspects of User Modelling in Personalized Web Search Automatic Summarization of Stock Market News Articles IME-Spell: Chinese Spelling Check based on Input Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1