Riming Sun, Nannan Li, Shengfa Wang, Lin Ji, Zhenyu Wang
{"title":"The Rectification of Document Images Using Text-features","authors":"Riming Sun, Nannan Li, Shengfa Wang, Lin Ji, Zhenyu Wang","doi":"10.1109/ICVRV.2017.00053","DOIUrl":null,"url":null,"abstract":"Distortion representation is the key to the rectification of distorted document images. The text-lines are considered to be one of the most significant features of the images, which are extensively used by a majority of rectification algorithms. However, it is quite a challenge to accurately extract the text-lines of document images with distortions and other disruptive factors, such as non-textural objects. In this approach, we present a general document rectification method based on local distortion representation that is depicted by text-features instead of the text-lines. Specially, firstly, according to the similarity of local distortion, we divide the document image into local blocks. Secondly, a text-feature is exploited to depict the warping distortion of each block by considering the skew angle. Then, the rectification problem is formulated utilizing a reverse strategy according to the text-features. Finally, a perspective distortion is restored by making use of random sample consensus. The proposed method is appropriate for document images of multi-column layouts, multi-type fonts and non-textural objects. Various experiments have demonstrated the flexibility and high performance of the approach.","PeriodicalId":187934,"journal":{"name":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRV.2017.00053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Distortion representation is the key to the rectification of distorted document images. The text-lines are considered to be one of the most significant features of the images, which are extensively used by a majority of rectification algorithms. However, it is quite a challenge to accurately extract the text-lines of document images with distortions and other disruptive factors, such as non-textural objects. In this approach, we present a general document rectification method based on local distortion representation that is depicted by text-features instead of the text-lines. Specially, firstly, according to the similarity of local distortion, we divide the document image into local blocks. Secondly, a text-feature is exploited to depict the warping distortion of each block by considering the skew angle. Then, the rectification problem is formulated utilizing a reverse strategy according to the text-features. Finally, a perspective distortion is restored by making use of random sample consensus. The proposed method is appropriate for document images of multi-column layouts, multi-type fonts and non-textural objects. Various experiments have demonstrated the flexibility and high performance of the approach.