Performance of Supervised Classifiers for Damage Scoring of Zebrafish Neuromasts

Rohit C. Philip, Sree Ramya S. P. Malladi, M. Niihori, A. Jacob, Jeffrey J. Rodríguez
{"title":"Performance of Supervised Classifiers for Damage Scoring of Zebrafish Neuromasts","authors":"Rohit C. Philip, Sree Ramya S. P. Malladi, M. Niihori, A. Jacob, Jeffrey J. Rodríguez","doi":"10.1109/SSIAI.2018.8470377","DOIUrl":null,"url":null,"abstract":"Supervised machine learning schemes are widely used to perform classification tasks. There is a wide variety of classifiers in use today, such as single- and multi-class support vector machines, k-nearest neighbors, decision trees, random forests, naive Bayes classifiers with or without kernel density estimation, linear discriminant analysis, quadratic discriminant analysis, and numerous neural network architectures. Our prior work used high-level shape, intensity, and texture features as predictors in a single-class support vector machine classifier to classify images of zebrafish neuromasts obtained using confocal microscopy into four discrete damage classes. Here, we analyze the performance of a multitude of supervised classifiers in terms of mean absolute error using these high-level features as predictors. In addition, we also analyze performance while using raw pixel data as predictors.","PeriodicalId":422209,"journal":{"name":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSIAI.2018.8470377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Supervised machine learning schemes are widely used to perform classification tasks. There is a wide variety of classifiers in use today, such as single- and multi-class support vector machines, k-nearest neighbors, decision trees, random forests, naive Bayes classifiers with or without kernel density estimation, linear discriminant analysis, quadratic discriminant analysis, and numerous neural network architectures. Our prior work used high-level shape, intensity, and texture features as predictors in a single-class support vector machine classifier to classify images of zebrafish neuromasts obtained using confocal microscopy into four discrete damage classes. Here, we analyze the performance of a multitude of supervised classifiers in terms of mean absolute error using these high-level features as predictors. In addition, we also analyze performance while using raw pixel data as predictors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
监督分类器对斑马鱼神经细胞损伤评分的性能研究
监督机器学习方案被广泛用于执行分类任务。目前使用的分类器种类繁多,例如单类和多类支持向量机、k近邻、决策树、随机森林、带或不带核密度估计的朴素贝叶斯分类器、线性判别分析、二次判别分析和许多神经网络架构。我们之前的工作在单类支持向量机分类器中使用高级形状、强度和纹理特征作为预测因子,将使用共聚焦显微镜获得的斑马鱼神经鞘图像分为四个离散的损伤类别。在这里,我们使用这些高级特征作为预测因子,从平均绝对误差的角度分析了大量监督分类器的性能。此外,我们还使用原始像素数据作为预测因子来分析性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Graph Modularity and Randomness Measures : A Comparative Study Drive-Net: Convolutional Network for Driver Distraction Detection In-between and cross-frequency dependence-based summarization of resting-state fMRI data A Ground-Truth Fusion Method for Image Segmentation Evaluation Sleep Analysis Using Motion and Head Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1