The Wasserstein Distance Using QAOA: A Quantum Augmented Approach to Topological Data Analysis

M. Saravanan, Mannathu Gopikrishnan
{"title":"The Wasserstein Distance Using QAOA: A Quantum Augmented Approach to Topological Data Analysis","authors":"M. Saravanan, Mannathu Gopikrishnan","doi":"10.1109/ICITIIT54346.2022.9744214","DOIUrl":null,"url":null,"abstract":"This paper examines the implementation of Topological Data Analysis methods based on Persistent Homology to meet the requirements of the telecommunication industry. Persistent Homology based methods are especially useful in detecting anomalies in time series data and show good prospects of being useful in network alarm systems. Of crucial importance to this method is a metric called the Wasserstein Distance, which measures how much two Persistence Diagrams differ from one another. This metric can be formulated as a minimum weight maximum matching problem on a bipartite graph. We here solve the combinatorial optimization problem of finding the Wasserstein Distance by applying the Quantum Approximate Optimization Algorithm (QAOA) using gate-based quantum computing methods. This technique can then be applied to detect anomalies in time series datasets involving network traffic/throughput data in telecommunication systems. The methodology stands to provide a significant technological advantage to service providers who adopt this, once practical gate-based quantum computers become ubiquitous.","PeriodicalId":184353,"journal":{"name":"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITIIT54346.2022.9744214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper examines the implementation of Topological Data Analysis methods based on Persistent Homology to meet the requirements of the telecommunication industry. Persistent Homology based methods are especially useful in detecting anomalies in time series data and show good prospects of being useful in network alarm systems. Of crucial importance to this method is a metric called the Wasserstein Distance, which measures how much two Persistence Diagrams differ from one another. This metric can be formulated as a minimum weight maximum matching problem on a bipartite graph. We here solve the combinatorial optimization problem of finding the Wasserstein Distance by applying the Quantum Approximate Optimization Algorithm (QAOA) using gate-based quantum computing methods. This technique can then be applied to detect anomalies in time series datasets involving network traffic/throughput data in telecommunication systems. The methodology stands to provide a significant technological advantage to service providers who adopt this, once practical gate-based quantum computers become ubiquitous.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用QAOA的Wasserstein距离:拓扑数据分析的量子增广方法
本文探讨了基于持久同构的拓扑数据分析方法的实现,以满足电信行业的需求。基于持久同源性的方法在检测时间序列数据异常方面特别有用,在网络报警系统中具有良好的应用前景。对于这种方法至关重要的是一个称为Wasserstein距离的度量,它度量两个持久性图彼此之间的差异。这个度量可以表述为二部图上的最小权值最大匹配问题。本文采用基于门的量子计算方法,应用量子近似优化算法(QAOA)解决了寻找Wasserstein距离的组合优化问题。该技术可用于检测涉及电信系统中网络流量/吞吐量数据的时间序列数据集中的异常情况。一旦实用的基于门的量子计算机变得无处不在,这种方法将为采用这种方法的服务提供商提供显著的技术优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HomeID: Home Visitors Recognition using Internet of Things and Deep Learning Algorithms Auto-Encoder LSTM for learning dependency of traffic flow by sequencing spatial-temporal traffic flow rate: A speed up technique for routing vehicles between origin and destination A Statistical Study and Analysis to Identify the Importance of Open-source Software Data Imputation Techniques: An Empirical Study using Chronic Kidney Disease and Life Expectancy Datasets Miniature probability maps using resource limited embedded device for classification of histopathological images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1