Modeling of the Hybrid Vibration-based Energy Harvester for Self-Powered IoT Sensor

M. Ahmad, M. S. Muhamed Ali Cader, Z. A. Mohammad Khairuddin
{"title":"Modeling of the Hybrid Vibration-based Energy Harvester for Self-Powered IoT Sensor","authors":"M. Ahmad, M. S. Muhamed Ali Cader, Z. A. Mohammad Khairuddin","doi":"10.1109/ICIAS49414.2021.9642667","DOIUrl":null,"url":null,"abstract":"Wireless sensor nodes (WSN) are usually used for the bridge monitoring system. The traditional way to supply power to these wireless sensor nodes by using the battery should be eliminated due to their disadvantages in terms of environmental health. Thus, an energy harvesting system has attracted interests among researchers due to its sustainability. Among all renewable energies, vibration energy is the most preferable energy for the application of the bridge sensor. Vibration energy consists of four transduction mechanisms which are piezoelectric, electromagnetic, electrostatic and magnetostrictive. In this paper, vibration energy harvesting is discussed by focusing on the hybrid energy harvester through the combination of piezoelectric and magnetostrictive transduction to enhance the output performance of the system. Hybrid structure based on piezoelectric and magnetostrictive mechanisms will be investigated in detail by focusing on their structure and the material to achieve the optimum output power than the conventional energy harvester. The spiral rectangular beam is designed and simulated by using the ANSYS software to get their resonance frequency value and frequency response for the beam. Simulation results show that the spiral rectangular design and lead zirconate titanate (PZT-5A) material proved promising results to obtain the optimum output power. For the magnetostrictive part, the ferromagnetic material has been replaced with the beryllium copper. Thus, distance of the magnet plays an important role for the optimum output power due to the presence of the magnetic flux density.","PeriodicalId":212635,"journal":{"name":"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)","volume":"255 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAS49414.2021.9642667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Wireless sensor nodes (WSN) are usually used for the bridge monitoring system. The traditional way to supply power to these wireless sensor nodes by using the battery should be eliminated due to their disadvantages in terms of environmental health. Thus, an energy harvesting system has attracted interests among researchers due to its sustainability. Among all renewable energies, vibration energy is the most preferable energy for the application of the bridge sensor. Vibration energy consists of four transduction mechanisms which are piezoelectric, electromagnetic, electrostatic and magnetostrictive. In this paper, vibration energy harvesting is discussed by focusing on the hybrid energy harvester through the combination of piezoelectric and magnetostrictive transduction to enhance the output performance of the system. Hybrid structure based on piezoelectric and magnetostrictive mechanisms will be investigated in detail by focusing on their structure and the material to achieve the optimum output power than the conventional energy harvester. The spiral rectangular beam is designed and simulated by using the ANSYS software to get their resonance frequency value and frequency response for the beam. Simulation results show that the spiral rectangular design and lead zirconate titanate (PZT-5A) material proved promising results to obtain the optimum output power. For the magnetostrictive part, the ferromagnetic material has been replaced with the beryllium copper. Thus, distance of the magnet plays an important role for the optimum output power due to the presence of the magnetic flux density.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合振动的自供电物联网传感器能量采集器建模
无线传感器节点(WSN)通常用于桥梁监控系统。利用电池为这些无线传感器节点供电的传统方式在环境健康方面存在缺点,应予以淘汰。因此,能量收集系统因其可持续性而引起了研究人员的兴趣。在所有可再生能源中,振动能是最适合桥梁传感器应用的能源。振动能量由压电、电磁、静电和磁致伸缩四种传导机制组成。本文以压电和磁致伸缩换能器相结合的混合能量采集器为研究对象,重点讨论了振动能量收集,以提高系统的输出性能。本文将详细研究基于压电和磁致伸缩机构的混合结构,重点研究其结构和材料,以获得比传统能量采集器更优的输出功率。利用ANSYS软件对螺旋矩形梁进行了设计和仿真,得到了螺旋矩形梁的谐振频率值和频率响应。仿真结果表明,螺旋矩形设计和锆钛酸铅(PZT-5A)材料获得了理想的输出功率。磁致伸缩部分用铍铜代替了铁磁性材料。因此,由于磁通密度的存在,磁体的距离对最佳输出功率起着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prospects and Techniques of Regenerative Current Breaking in DC Circuit Breaker Topology Fractional Stochastic Gradient Descent Based Learning Algorithm For Multi-layer Perceptron Neural Networks Domestic Electrical Energy Monitoring and Alerting Using SCADA and IoT Stochastic Approach for the Identification of Retinopathy of Prematurity Fault Classification and Location in Three-Phase Transmission Lines Using Wavelet-based Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1