Analysis physiological signals for emotion recognition

Khadidja Gouizi, F. B. Reguig, C. Maaoui
{"title":"Analysis physiological signals for emotion recognition","authors":"Khadidja Gouizi, F. B. Reguig, C. Maaoui","doi":"10.1109/WOSSPA.2011.5931436","DOIUrl":null,"url":null,"abstract":"The emotion recognition is one of the great challenges in human-human and human-computer interaction. In this paper, an approach for the emotions recognition based on physiological signals is proposed. Six basic emotions: joy, sadness, fear, disgust, neutrality and amusement are analysed using physiological signals. These emotions are induced through the presentation of IAPS pictures (International Affecting Picture System) to the subjects. Also, the physiological signals of interest in this analysis are: electromyogram signal (EMG), respiratory volume (RV), skin temperature (SKT), skin conductance (SKC), blood volume pulse (BVP) and heart rate (HR). These are selected to extract some characteristic parameters, which will be used for classifying the emotions. The SVM (support vector machines) technique is used for classifying these parameters. The experimental results show that the proposed methodology provides a recognition rate of 85% for different emotional states.","PeriodicalId":343415,"journal":{"name":"International Workshop on Systems, Signal Processing and their Applications, WOSSPA","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Systems, Signal Processing and their Applications, WOSSPA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOSSPA.2011.5931436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

The emotion recognition is one of the great challenges in human-human and human-computer interaction. In this paper, an approach for the emotions recognition based on physiological signals is proposed. Six basic emotions: joy, sadness, fear, disgust, neutrality and amusement are analysed using physiological signals. These emotions are induced through the presentation of IAPS pictures (International Affecting Picture System) to the subjects. Also, the physiological signals of interest in this analysis are: electromyogram signal (EMG), respiratory volume (RV), skin temperature (SKT), skin conductance (SKC), blood volume pulse (BVP) and heart rate (HR). These are selected to extract some characteristic parameters, which will be used for classifying the emotions. The SVM (support vector machines) technique is used for classifying these parameters. The experimental results show that the proposed methodology provides a recognition rate of 85% for different emotional states.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分析情绪识别的生理信号
情感识别是人机交互领域的重大挑战之一。本文提出了一种基于生理信号的情绪识别方法。六种基本情绪:喜悦,悲伤,恐惧,厌恶,中性和娱乐分析使用生理信号。这些情绪是通过IAPS图片(国际影响图片系统)呈现给被试来诱发的。此外,本分析中感兴趣的生理信号是:肌电信号(EMG)、呼吸量(RV)、皮肤温度(SKT)、皮肤电导(SKC)、血容量脉搏(BVP)和心率(HR)。选择这些参数提取一些特征参数,这些特征参数将用于对情绪进行分类。使用支持向量机(SVM)技术对这些参数进行分类。实验结果表明,该方法对不同情绪状态的识别率达到85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance limitations of an optical RZ-DPSK transmission system affected by frequency chirp, chromatic dispersion and polarization mode dispersion MPEG-4 AVC re-encoding for watermarking purposes Some issues on cognitive radio and UWB technology convergence for enabling green networks Adaptive blind equalization for QAM modulated signals in the presence of frequency offset Elliptic Curve Cryptography and its applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1