{"title":"Optimizing Regular Expression Matching with SR-NFA on Multi-Core Systems","authors":"Y. Yang, V. Prasanna","doi":"10.1109/PACT.2011.73","DOIUrl":null,"url":null,"abstract":"Conventionally, regular expression matching (REM) has been performed by sequentially comparing the regular expression (regex) to the input stream, which can be slow due to excessive backtracking (smith:acsac06). Alternatively, the regex can be converted to a deterministic finite automaton (DFA) for efficient matching, which however may require an extremely large state transition table (STT) due to exponential state explosion (meyer:swat71, yu:ancs06). We propose the segmented regex-NFA (SR-NFA) architecture, where the regex is first compiled into modular nondeterministic finite automata (NFA), then partitioned, optimized, and matched efficiently on modern multi-core processors. SR-NFA offers attack-resilient multi-gigabit per second matching throughput, does not suffer from either backtracking or state explosion, and can be rapidly constructed. For regex sets that construct a DFA with moderate state explosion, i.e., on average 200k states in the STT, the proposed SR-NFA is 367k times faster to construct and update and use 23k times less memory than the DFA approach. Running on an 8-core 2.6 GHz Opteron platform, our prototype achieves 2.2 Gbps average matching throughput for regex sets with up to 4,000 SR-NFA states per regex set.","PeriodicalId":106423,"journal":{"name":"2011 International Conference on Parallel Architectures and Compilation Techniques","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Parallel Architectures and Compilation Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACT.2011.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Conventionally, regular expression matching (REM) has been performed by sequentially comparing the regular expression (regex) to the input stream, which can be slow due to excessive backtracking (smith:acsac06). Alternatively, the regex can be converted to a deterministic finite automaton (DFA) for efficient matching, which however may require an extremely large state transition table (STT) due to exponential state explosion (meyer:swat71, yu:ancs06). We propose the segmented regex-NFA (SR-NFA) architecture, where the regex is first compiled into modular nondeterministic finite automata (NFA), then partitioned, optimized, and matched efficiently on modern multi-core processors. SR-NFA offers attack-resilient multi-gigabit per second matching throughput, does not suffer from either backtracking or state explosion, and can be rapidly constructed. For regex sets that construct a DFA with moderate state explosion, i.e., on average 200k states in the STT, the proposed SR-NFA is 367k times faster to construct and update and use 23k times less memory than the DFA approach. Running on an 8-core 2.6 GHz Opteron platform, our prototype achieves 2.2 Gbps average matching throughput for regex sets with up to 4,000 SR-NFA states per regex set.