Brain Tumor Detection Using Color-Based K-Means Clustering Segmentation

Ming-Ni Wu, Chia-Chen Lin, Chinchen Chang
{"title":"Brain Tumor Detection Using Color-Based K-Means Clustering Segmentation","authors":"Ming-Ni Wu, Chia-Chen Lin, Chinchen Chang","doi":"10.1109/IIH-MSP.2007.356","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a color-based segmentation method that uses the K-means clustering technique to track tumor objects in magnetic resonance (MR) brain images. The key concept in this color-based segmentation algorithm with K-means is to convert a given gray-level MR image into a color space image and then separate the position of tumor objects from other items of an MR image by using K-means clustering and histogram-clustering. Experiments demonstrate that the method can successfully achieve segmentation for MR brain images to help pathologists distinguish exactly lesion size and region.","PeriodicalId":385132,"journal":{"name":"Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP 2007)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"192","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIH-MSP.2007.356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 192

Abstract

In this paper, we propose a color-based segmentation method that uses the K-means clustering technique to track tumor objects in magnetic resonance (MR) brain images. The key concept in this color-based segmentation algorithm with K-means is to convert a given gray-level MR image into a color space image and then separate the position of tumor objects from other items of an MR image by using K-means clustering and histogram-clustering. Experiments demonstrate that the method can successfully achieve segmentation for MR brain images to help pathologists distinguish exactly lesion size and region.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于颜色的k均值聚类分割的脑肿瘤检测
在本文中,我们提出了一种基于颜色的分割方法,该方法使用k均值聚类技术来跟踪磁共振(MR)脑图像中的肿瘤目标。该基于颜色的K-means分割算法的关键思想是将给定的灰度级MR图像转换为颜色空间图像,然后利用K-means聚类和直方图聚类分离出MR图像中肿瘤目标的位置。实验表明,该方法可以成功地实现对MR脑图像的分割,帮助病理学家准确区分病灶大小和区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image Retrieval with Long-Term Memory Learning and Short-Time Relevance Feedback Psychoacoustically-Adapted Patchwork Algorithm for Watermarking A Resistor String DAC for Video Processing Crytanalysis and Improvement on Chang et al.'s Signature Scheme A Multi-path Routing Protocol with Reduced Control Messages for Wireless Sensor Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1