Model Analysis for Estimating Optimal Hedging Ratio of Stock Index Futures

Ya-juan Yang, Hong Zhang
{"title":"Model Analysis for Estimating Optimal Hedging Ratio of Stock Index Futures","authors":"Ya-juan Yang, Hong Zhang","doi":"10.1109/CIS.2017.00083","DOIUrl":null,"url":null,"abstract":"This paper aims at the optimal hedging ratio estimation of stock index futures. The determination of the optimal hedging ratio is the main part of the hedging transaction. There are many hedge ratio calculation method, in which the most important are two: one based on minimizing the risk of portfolio risk and the other based on the maximizing utility of the portfolio. We employ ECM-GARCH model for estimating the risk-minimizing hedging ratio while meanvariance model for the utility-maximizing hedging ratio. First, we analyze the optimal hedge ratio under the principle of risk minimization: the main idea of this method is to minimize the variance of the yield of the portfolio after hedging. Secondly, for investors in the hedging transactions hope to get a certain income, the maximum utility hedging can be engaged to achieve this purpose by the proposed model herein. Finally, the risk minimization hedge ratio and the utility maximization hedge ratio's calculation results are carried out and the comparison being expressed then.","PeriodicalId":304958,"journal":{"name":"2017 13th International Conference on Computational Intelligence and Security (CIS)","volume":"375 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2017.00083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims at the optimal hedging ratio estimation of stock index futures. The determination of the optimal hedging ratio is the main part of the hedging transaction. There are many hedge ratio calculation method, in which the most important are two: one based on minimizing the risk of portfolio risk and the other based on the maximizing utility of the portfolio. We employ ECM-GARCH model for estimating the risk-minimizing hedging ratio while meanvariance model for the utility-maximizing hedging ratio. First, we analyze the optimal hedge ratio under the principle of risk minimization: the main idea of this method is to minimize the variance of the yield of the portfolio after hedging. Secondly, for investors in the hedging transactions hope to get a certain income, the maximum utility hedging can be engaged to achieve this purpose by the proposed model herein. Finally, the risk minimization hedge ratio and the utility maximization hedge ratio's calculation results are carried out and the comparison being expressed then.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
股指期货最优套期保值比率的模型分析
本文研究股指期货的最优套期保值比率估计问题。最优套期比率的确定是套期交易的主要内容。套期保值比率的计算方法很多,其中最重要的有两种:一种是基于投资组合风险风险的最小化,另一种是基于投资组合效用的最大化。我们使用ECM-GARCH模型来估计风险最小化的套期保值比率,使用均值方差模型来估计效用最大化的套期保值比率。首先,我们分析了风险最小化原则下的最优套期比率:该方法的主要思想是使套期后的投资组合收益率方差最小。其次,对于在套期交易中希望获得一定收益的投资者,本文提出的模型可以利用最大效用套期保值来实现这一目的。最后,对风险最小化对冲比率和效用最大化对冲比率的计算结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-hop Based Centrality of a Path in Complex Network Improving Hybrid Gravitational Search Algorithm for Adaptive Adjustment of Parameters Document Sensitivity Classification for Data Leakage Prevention with Twitter-Based Document Embedding and Query Expansion Side Channel Attack on SM4 Algorithm with Ensemble Method Pedestrian Detection Method Based on Faster R-CNN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1