Cluster merging based on weighted mahalanobis distance with application in digital mammograph

K. Younis, M. Karim, R. Hardie, J. Loomis, S. Rogers, M. DeSimio
{"title":"Cluster merging based on weighted mahalanobis distance with application in digital mammograph","authors":"K. Younis, M. Karim, R. Hardie, J. Loomis, S. Rogers, M. DeSimio","doi":"10.1109/NAECON.1998.710194","DOIUrl":null,"url":null,"abstract":"A new clustering algorithm that uses a weighted Mahdlanobis distance as a distance metric to perform partitional clustering is proposed. The covariance matrices of the generated clusters are used to determine cluster similarity and closeness so that clusters which are similar in shape and close in Mahalanobis distance can be merged together serving the ultimate goal of automatically determining the optimal number of classes present in the data. Properties of the new algorithm are presented by examining the clustering quality for codebooks designed with the proposed method and another common method that uses Euclidean distance. The new algorithm provides better results than the competing method on a variety of data sets. Application of this algorithm to the problem of detecting suspicious regions in a mammogram is discussed.","PeriodicalId":202280,"journal":{"name":"Proceedings of the IEEE 1998 National Aerospace and Electronics Conference. NAECON 1998. Celebrating 50 Years (Cat. No.98CH36185)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 1998 National Aerospace and Electronics Conference. NAECON 1998. Celebrating 50 Years (Cat. No.98CH36185)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.1998.710194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

A new clustering algorithm that uses a weighted Mahdlanobis distance as a distance metric to perform partitional clustering is proposed. The covariance matrices of the generated clusters are used to determine cluster similarity and closeness so that clusters which are similar in shape and close in Mahalanobis distance can be merged together serving the ultimate goal of automatically determining the optimal number of classes present in the data. Properties of the new algorithm are presented by examining the clustering quality for codebooks designed with the proposed method and another common method that uses Euclidean distance. The new algorithm provides better results than the competing method on a variety of data sets. Application of this algorithm to the problem of detecting suspicious regions in a mammogram is discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于加权马氏距离的聚类合并在数字乳腺摄影中的应用
提出了一种利用加权Mahdlanobis距离作为距离度量进行分簇的聚类算法。生成的聚类的协方差矩阵用于确定聚类的相似度和接近度,以便将形状相似且马氏距离相近的聚类合并在一起,以自动确定数据中存在的最优类数。通过检验用该方法设计的码本的聚类质量和另一种常用的利用欧几里得距离的方法,给出了新算法的性质。在各种数据集上,新算法比竞争方法提供了更好的结果。讨论了该算法在乳房x光片可疑区域检测中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrating Chip Carrier Packaging Technology Into Avionic Systems Aircraft Avionics Cooling, Present And Future Aerospace Computers In The 1980s Failure Detection Without Excessive Hardware Redundancy Interface Design Considerations for F-16 Sensors and Weapons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1