The Rapidly Exploring Random Tree Funnel Algorithm

Ole Petter Orhagen, Marius Thoresen, Kim Mathiassen
{"title":"The Rapidly Exploring Random Tree Funnel Algorithm","authors":"Ole Petter Orhagen, Marius Thoresen, Kim Mathiassen","doi":"10.1109/ICMRE54455.2022.9734089","DOIUrl":null,"url":null,"abstract":"This paper shows the feasibility of combining robust motion primitives generated through the Sums Of Squares programming theory with a discrete Rapidly exploring Random Tree algorithm. The generated robust motion primitives, referred to as funnels, are then employed as local motion primitives, each with its locally valid Linear Quadratic Regulator (LQR) controller, which is verified through a Lyapunov function found through a Sum Of Squares (SOS) search in the function space. These funnels are then combined together at execution time by the Rapidly-exploring-Random-Tree (RRT) planner, and is shown to provide provably robust traversal of a simulated forest environment. The experiments benchmark the RRT-Funnel algorithm against an RRT algorithm which employs a maximum distance to the nearest obstacle heuristic in order to avoid collisions, as opposed to explicitly handling uncertainty. The results show that employing funnels as robust motion primitives outperform the heuristic planner in the experiments run on both algorithms, where the RRT-Funnel algorithm does not collide a single time, and creates shorter solution paths than the benchmark planner overall, although it takes a significantly longer time to find a solution.","PeriodicalId":419108,"journal":{"name":"2022 8th International Conference on Mechatronics and Robotics Engineering (ICMRE)","volume":"47 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Mechatronics and Robotics Engineering (ICMRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMRE54455.2022.9734089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper shows the feasibility of combining robust motion primitives generated through the Sums Of Squares programming theory with a discrete Rapidly exploring Random Tree algorithm. The generated robust motion primitives, referred to as funnels, are then employed as local motion primitives, each with its locally valid Linear Quadratic Regulator (LQR) controller, which is verified through a Lyapunov function found through a Sum Of Squares (SOS) search in the function space. These funnels are then combined together at execution time by the Rapidly-exploring-Random-Tree (RRT) planner, and is shown to provide provably robust traversal of a simulated forest environment. The experiments benchmark the RRT-Funnel algorithm against an RRT algorithm which employs a maximum distance to the nearest obstacle heuristic in order to avoid collisions, as opposed to explicitly handling uncertainty. The results show that employing funnels as robust motion primitives outperform the heuristic planner in the experiments run on both algorithms, where the RRT-Funnel algorithm does not collide a single time, and creates shorter solution paths than the benchmark planner overall, although it takes a significantly longer time to find a solution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
快速探索随机树漏斗算法
本文证明了将平方和规划理论生成的鲁棒运动原语与离散快速探索随机树算法相结合的可行性。生成的鲁棒运动基元,称为漏斗,然后被用作局部运动基元,每个基元都有其局部有效的线性二次调节器(LQR)控制器,通过在函数空间中通过平方和(SOS)搜索找到的李雅普诺夫函数来验证。然后,这些漏斗在执行时由快速探索随机树(RRT)规划器组合在一起,并被证明可以提供模拟森林环境的可靠遍历。实验将RRT- funnel算法与RRT算法进行基准测试,RRT算法采用到最近障碍物的最大距离启发式来避免碰撞,而不是明确地处理不确定性。结果表明,在两种算法上运行的实验中,使用漏斗作为鲁棒运动基元优于启发式规划器,其中rrt -漏斗算法不会发生单次碰撞,并且总体上比基准规划器创建更短的解决路径,尽管它需要更长的时间来找到解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Open-Source Educational Platform for FPGA Accelerated AI in Robotics Learning Fruit Class from Short Wave Near Infrared Spectral Features, an AI Approach Towards Determining Fruit Type Design of Haptic Vibrational Feedback Control in Upper Extremity Myoelectric Prostheses Feature-Based Lane Detection Algorithms for Track Following: A Comparative Study Deep Belief Network-based Prediction for Gear Noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1